勾股定理教案
發(fā)布時間:2023-07-04 勾股定理教案勾股定理教案精選。
宜未雨綢而繆,毋臨竭而掘井。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學(xué)效果,因此,老師們都會選擇準(zhǔn)備一份教案,有了教案上課才能夠為同學(xué)講更多的,更全面的知識。幼兒園教案的內(nèi)容具體要怎樣寫呢?有請駐留一會,閱讀小編為你整理的勾股定理教案精選,歡迎分享給你的朋友!
勾股定理教案 篇1
一、學(xué)生知識狀況分析
本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學(xué)生了解空間圖形、對一些空間圖形進(jìn)行展開、折疊等活動。學(xué)生在學(xué)習(xí)七年級上第一章時對生活中的立體圖形已經(jīng)有了一定的認(rèn)識,并從事過相應(yīng)的實踐活動,因而學(xué)生已經(jīng)具備解決本課問題所需的知識基礎(chǔ)和活動經(jīng)驗基礎(chǔ)。
二、教學(xué)任務(wù)分析
本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡單的實際問題。當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識;一些探究活動具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。
三、本節(jié)課的教學(xué)目標(biāo)是:
1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.
2.在將實際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點(diǎn)也是難點(diǎn).
四、教法學(xué)法
1.教學(xué)方法
引導(dǎo)—探究—?dú)w納
本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識教強(qiáng),思維活躍,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個方面對學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動出發(fā),順勢教學(xué)過程;
(3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件.
學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.
五、教學(xué)過程分析
本節(jié)課設(shè)計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).
1.3勾股定理的應(yīng)用:課后練習(xí)
一、問題引入:
1、勾股定理:直角三角形兩直角邊的________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。
2、勾股定理逆定理:如果三角形三邊長a,b,c滿足________,那么這個三角形是直角三角形
1.3勾股定理的應(yīng)用:同步檢測
1.為迎接新年的到來,同學(xué)們做了許多拉花布置教室,準(zhǔn)備召開新年晚會,小劉搬來一架高2.5米的木梯,準(zhǔn)備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應(yīng)為( )
A.0.7米B.0.8米C.0.9米D.1.0米
2.小華和小剛兄弟兩個同時從家去同一所學(xué)校上學(xué),速度都是每分鐘走50米.小華從家到學(xué)校走直線用了10分鐘,而小剛從家出發(fā)先去找小明再到學(xué)校(均走直線),小剛到小明家用了6分鐘,小明家到學(xué)校用了8分鐘,小剛上學(xué)走了個( )
A.銳角彎B.鈍角彎C.直角彎D.不能確定
3.如圖,是一個圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個小圓孔,則一條到達(dá)底部的直吸管在罐內(nèi)部分a的長度(罐壁的厚度和小圓孔的大小忽略不計)范圍是( )
A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
4.一個木工師傅測量了一個等腰三角形木板的腰、底邊和高的長,但他把這三個數(shù)據(jù)與其它的數(shù)據(jù)弄混了,請你幫助他找出來,是第( )組.
A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4
勾股定理教案 篇2
教材分析:
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(蘇科版),八年級上冊第三
章第一節(jié)“勾股定理”的第一課時、勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的重要性質(zhì),它把三角形有一個直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范,它可以解決許多直角三角形中的計算問題、學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解、
教學(xué)目標(biāo):
1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,從探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程、培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體會數(shù)形結(jié)合思想、
2、能說出勾股定理,并能用勾股定理解決簡單問題、
3、在經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程中培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;感受勾股定理的文化價值、
教學(xué)重點(diǎn):
探索勾股定理的過程,會利用兩邊長求直角三角形的另一邊長、
教學(xué)難點(diǎn):
用割、補(bǔ)法求面積探索勾股定理、
教學(xué)方法與教學(xué)手段:
采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境、給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有方向地探索、
1、同學(xué)們,我們已經(jīng)學(xué)過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你能確定第三邊的長嗎?你能確定第三邊的長的范圍嗎?
2、如果這兩邊所夾的角確定了,那么第三邊的長確定嗎?第三邊的長是多少?
3、直角三角形兩邊長確定了,第三邊的長確定嗎?如何求第三邊的長呢?這節(jié)課就讓我們一起來探討這個問題、板書:直角三角形三邊數(shù)量關(guān)系、
(這是對三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生的原有認(rèn)知出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo)、當(dāng)一般性的問題不好解決時,可以先將一般問題轉(zhuǎn)化為特殊問題來研究)
1、(幾何畫板出示),觀察圖形,我們以直角三角形ABC三邊為邊向形外作三個正方形、若將圖形①②③④⑤剪下,用它們可以拼一個與正方形ABDE大小一樣的正方形嗎?
(同桌同學(xué)合作拼圖)通過拼圖,你有什么發(fā)現(xiàn)?
(以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積)
(拼圖活動,引發(fā)了學(xué)生的猜想,增加了研究的趣味性,鍛煉了學(xué)生的空間思維能力和動手能力,體現(xiàn)了活動——數(shù)學(xué))
2、拼圖活動引發(fā)我們的靈感,運(yùn)算推演證實我們的猜想、為了計算面積方便,我們可將這幅圖形放在方格紙中、如果每一個小方格的邊長記作“1”,請你求出此時三個正方形的面積(SP=9,SQ=16)
如何求SR?(SR的求法是這節(jié)課的難點(diǎn),這時可讓學(xué)生先在學(xué)案上獨(dú)立分析,再通過小組交流,最后由小組代表到臺前展示)
(旋轉(zhuǎn)這種方法只適用于斜邊為整數(shù)的情況,沒有一般性,而且此時斜邊的長還不能求出來.若有學(xué)生提出,應(yīng)提醒學(xué)生)
肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生打開書回顧課本上的提示、從小明、小麗的方法中你能得到什么啟發(fā)?
(把圖形進(jìn)行“割”和“補(bǔ)“,即把不能利用網(wǎng)格線直接計算面積的圖形轉(zhuǎn)化成可以利用網(wǎng)格線直接計算面積的圖形、這種思想方法,稱為化歸思想)
3、變化直角三角形,仿照以上方法計算直角邊為5和3的直角三角形中以斜邊為邊的正方形面積
(這是“割”和“補(bǔ)”思想的再一次應(yīng)用、讓學(xué)生感受所學(xué)即所用,體驗成功的樂趣)
4、通過計算,你發(fā)現(xiàn)這三個正方形面積間有什么關(guān)系嗎?
5、利用方格紙,我們方便計算直角邊為整數(shù)的情況,若直角邊為小數(shù)時,所得到的正方形面積間也有如上關(guān)系嗎?
(利用幾何畫板的高效性、動態(tài)性反映這一過程,讓學(xué)生體會到更多一般的情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻)
6、我們這節(jié)課是探索直角三角形三邊數(shù)量關(guān)系、至此,你對直角三角形三邊的數(shù)量關(guān)系有什么發(fā)現(xiàn)?
(面積是邊長的平方,面積間的等量關(guān)系轉(zhuǎn)化為邊長間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于斜邊的平方)
(這一問題的結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié)、交流、表達(dá))
7、用彎曲的手臂形象地表示勾、股、弦的概念,再給出勾股定理,進(jìn)而給出字母表達(dá)式、一段緊張的探索過程之后,播放一段有關(guān)勾股歷史的錄音
(這樣既活躍了課堂氣氛,又展現(xiàn)了勾股歷史,激發(fā)學(xué)生熱愛祖國悠久歷史文化,激勵學(xué)生發(fā)奮學(xué)習(xí)的情感)
(1)求下列直角三角形中未知邊的長:
(2)求下列圖中未知數(shù)x、y、z的值:
在學(xué)生回答的基礎(chǔ)上,老師規(guī)范板書一題、
(在對勾股定理基本應(yīng)用的基礎(chǔ)上,讓學(xué)生體會知道直角三角形三邊中的任意兩邊,可以求第三邊)
學(xué)生可以談本節(jié)課的收獲,也可以提出本節(jié)課的疑問、教師引導(dǎo)學(xué)生思考特殊的三角形直角三角形三邊有特殊的等量關(guān)系,一般三角形三邊是否也存在一種等量關(guān)系呢?這是我們今后將要探討的內(nèi)容、
(學(xué)生總結(jié)本堂課的收獲,從內(nèi)容、應(yīng)用,到數(shù)學(xué)思想方法,獲取知識的途徑等方面,給學(xué)生自由的空間,鼓勵學(xué)生多說、這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力、最后提及的問題與引入首尾呼應(yīng),激發(fā)了學(xué)生深入研究的興趣)
勾股定理教案 篇3
教學(xué)目標(biāo)
知識與技能:
了解勾股定理的一些證明方法,會簡單應(yīng)用勾股定理解決問題
過程與方法:
在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
情感態(tài)度價值觀:
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
教學(xué)過程
1、創(chuàng)設(shè)情境
問題1國際數(shù)學(xué)家大會是最高水平的全球性數(shù)學(xué)學(xué)科學(xué)術(shù)會議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會”。2002年在北京召開了第24屆國際數(shù)學(xué)家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學(xué)習(xí)過的基本圖形組成?這個圖案有什么特別的含義?
師生活動:教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會徽圖案的含義。
設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會的會徽說起,設(shè)置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界
問題2相傳2500多年前,畢達(dá)哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應(yīng)了直角三角形三邊的某種數(shù)量關(guān)系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?
師生活動:學(xué)生先獨(dú)立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍(lán)色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學(xué)生的討論
追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?
師生活動:教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論
問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
師生活動:學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補(bǔ)兩種方法,求出其面積。
勾股定理教案 篇4
一、教材分析
(一)教材所處的地位
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書八年級第十八章第一節(jié)勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:
1、知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程。
2、數(shù)學(xué)思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想。
3、解決問題:①通過拼圖活動,體驗數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。
②在探究過程中,學(xué)會與人合作并能與他人交流思維的過程和探究的結(jié)果。
4、情感態(tài)度:①通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。
②在探究過程中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識和探索精神。
(三)本課的教學(xué)重點(diǎn):探索和證明勾股定理
本課的教學(xué)難點(diǎn):用拼圖的方法證明勾股定理
二、教法與學(xué)法分析:
教法分析:針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題實驗操作歸納驗證問題解決鞏固練習(xí)課堂小結(jié) 布置作業(yè)七部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
三、教學(xué)過程設(shè)計
(一)提出問題:
首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設(shè)問題情境,2002年在北京召開了第24屆國際數(shù)學(xué)家大會,它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會議,被譽(yù)為數(shù)學(xué)界的奧運(yùn)會,這就是本屆大會會徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學(xué)生的求知欲。
其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的求知欲。
勾股定理教案 篇5
教學(xué)目標(biāo)
1、知識與技能目標(biāo)
學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力.
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.
(2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.
教學(xué)重點(diǎn):
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.
教學(xué)難點(diǎn):
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.
教學(xué)準(zhǔn)備:
多媒體
教學(xué)過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
情景:
如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點(diǎn)連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算.
學(xué)生匯總了四種方案:
(1) (2) (3)(4)
學(xué)生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.
學(xué)生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點(diǎn)之間線段最短可判斷(4)最短.
如圖:
(1)中A→B的路線長為:AA’+d;
(2)中A→B的路線長為:AA’+A’B>AB;
(3)中A→B的路線長為:AO+OB>AB;
(4)中A→B的路線長為:AB.
得出結(jié)論:利用展開圖中兩點(diǎn)之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學(xué)生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.
第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
(1)你能替他想辦法完成任務(wù)嗎?
(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
(3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)
1.甲、乙兩位探險者到沙漠進(jìn)行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00,甲、乙兩人相距多遠(yuǎn)?
2.如圖,臺階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離.
3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?
第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:
1、如何利用勾股定理及逆定理解決最短路程問題?
第六 環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
內(nèi)容:
作業(yè):1.課本習(xí)題1.5第1,2,3題.
要求:A組(學(xué)優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
板書設(shè)計:
教學(xué)反思:
勾股定理教案 篇6
一、 說教材分析
1. 教材的地位和作用
華師大版八年級上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。
因此他的教育教學(xué)價值就具體體現(xiàn)在如下三維目標(biāo)中:
知識與技能:
1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。
2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實際問題。
過程與方法:
1、經(jīng)歷觀察—猜想—?dú)w納—驗證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。
2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學(xué)生的數(shù)學(xué)語言表達(dá)能力和初步的邏輯推理能力。
情感、態(tài)度與價值觀:
1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。
2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作意識和然所精神。
3、讓學(xué)生通過動手實踐,增強(qiáng)探究和創(chuàng)新意識,體驗研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學(xué)習(xí)方式。
由于八年級的學(xué)生具有一定分析能力,但活動經(jīng)驗不足,所以
本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過程,并掌握和運(yùn)用它。
教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。
二、說教法學(xué)法分析:
要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:
先從學(xué)生熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。
學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學(xué)生感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。
三、 說教學(xué)程序設(shè)計
1、 故事引入新課,激起學(xué)生學(xué)習(xí)興趣。
牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。
2、探索新知
在這里我設(shè)計了四個內(nèi)容:
①探索等腰直角三角形三邊的關(guān)系
②邊長為3、4、5為邊長的直角三角形的三邊關(guān)系
③學(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系
④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)
⑤勾股定理歷史介紹,讓學(xué)生體會勾股定理的文化價值。
體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。
3、新知運(yùn)用:
①舉出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)
②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.
③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?
④如圖,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.
4、小結(jié)本課:
學(xué)完了這節(jié)課,你有什么收獲?
老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。
反思:
教學(xué)設(shè)計主要是體現(xiàn)從特殊到一般的知識形成過程,探索問題的設(shè)計上有點(diǎn)難,第二個問題應(yīng)加個3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補(bǔ)全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設(shè)計進(jìn)去,就為后面的練習(xí)留足時間。探索時間較長,整個課程推行進(jìn)度較慢,練習(xí)較少。
對學(xué)生的啟發(fā)不夠,對學(xué)生的關(guān)注不夠,學(xué)生對問題的思考不能及時想出來,沒有及時很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因為問題設(shè)計的較難,沒有很好的體現(xiàn)出探究。
預(yù)期的目標(biāo)沒有很好的達(dá)成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點(diǎn)燃,思維能力,動手能力,探索精神沒有很好的得到發(fā)展。
勾股定理教案 篇7
一、教材分析
本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時.在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識形成知識鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。
在探求勾股定理的過程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。把三角形有一個直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計算的格點(diǎn)圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節(jié)課,要創(chuàng)設(shè)問題串,提供學(xué)生活動的方案,讓學(xué)生在活動中思考,在思考中創(chuàng)新,認(rèn)識和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計算問題.
二、教學(xué)目標(biāo)
1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。
2、讓學(xué)生經(jīng)歷拼圖實驗、計算面積的過程,在過程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過程中發(fā)揮自己特長,通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過老師的介紹,感受勾股定理的文化價值.
3、能說出勾股定理,并能用勾股定理解決簡單問題.
三、教學(xué)重點(diǎn)
勾股定理的探索過程.
四、教學(xué)難點(diǎn)
將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.
五、教學(xué)方法與教學(xué)手段
采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境.給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有目的地探索.
六、教學(xué)過程
(一)創(chuàng)設(shè)情境 提出問題
1.同學(xué)們,我們已經(jīng)學(xué)過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?
2.如果又已知這兩邊的夾角,那么第三邊的長是多少?
3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節(jié)課就讓我們一起來探討這個問題.板書:直角三角形三邊數(shù)量關(guān)系.
(這是對三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生從原有的認(rèn)知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo).讓學(xué)生體會到當(dāng)一般性的問題不好解決時,可以先將一般問題轉(zhuǎn)化為特殊問題來研究.)
(二)實踐探索 猜想歸納
1、用什么方法來探求板書:直角三角形三邊數(shù)量關(guān)系呢?
回憶我們曾經(jīng)利用圖形面積探索過數(shù)學(xué)公式,大家還記得在哪用過嗎?
(學(xué)生討論)
課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.
今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系.
(從學(xué)生已有的學(xué)習(xí)經(jīng)驗出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺得解決今天問題的方法并不陌生,增強(qiáng)探索問題的信心.)
2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個與正方形ABDE大小一樣的正方形嗎?
(同位利用教師提供的學(xué)案,合作拼圖。)
通過拼圖,你有什么發(fā)現(xiàn)?
(如圖3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動,引發(fā)了學(xué)生的猜想,增加了研究的趣味性,鍛煉了學(xué)生的空間思維能力和動手能力.體現(xiàn)了活動——數(shù)學(xué)的思想.)
3、拼圖活動引發(fā)我們的靈感;運(yùn)算推演
證實我們的猜想.為了計算面積方便,我們可
將這幅圖形放在方格紙中.如果每一個小方格的邊長記作“1”,請你求出圖中三個正方形的面積(圖4).
(學(xué)生容易回答SP=9,SQ=16。)
你是如何得到的?
(可以數(shù)圖形中的小方格的個數(shù),也可以通
過正方形面積公式計算得到。)
如何計算 ?
(的求法是這節(jié)課的難點(diǎn),這時可讓學(xué)生先在學(xué)案上獨(dú)立分析,再通過小組交流,最后由小組代表到臺前展示.學(xué)生可能提出割(圖5)、補(bǔ)(圖6)、平移(圖7)、旋轉(zhuǎn)(圖8)等方法,旋轉(zhuǎn)這種方法只適用于斜邊為整數(shù)的情況,沒有一般性,若有學(xué)生提出,應(yīng)提醒學(xué)生.)
4、肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生打開書回顧課本上的提示.從小明、小麗的方法中你能得到什么啟發(fā)?
(把圖形進(jìn)行“割”和“補(bǔ)”,即把不能利用網(wǎng)格線直接計算面積的圖形轉(zhuǎn)化成可以利用網(wǎng)格線直接計算面積的圖形,讓學(xué)生體會將較難的問題轉(zhuǎn)化為簡單問題的思想)
5、再給出直角邊為5和3的直角三角形(圖9),讓學(xué)生計算分別以三邊作為邊所作的正方形面積.
(這是轉(zhuǎn)化思想,也是“割補(bǔ)”方法的再一次應(yīng)用.在
前面的探求過程中有的學(xué)生沒能自己做出來,提供再一次的機(jī)會,可讓全體學(xué)生再次感受轉(zhuǎn)化思想,體驗成功的樂趣.)
通過計算,你發(fā)現(xiàn)這三個正方形面積間有什么關(guān)系嗎?
(SP+SQ=SR,要給學(xué)生留有思考時間.)
6、通過以上的實驗、操作、計算,我們發(fā)現(xiàn)以直角三角形的各邊為邊所作的正方形的面積之間有什么關(guān)系呢?同學(xué)們還有什么疑問嗎?
(以直角邊為邊所作的`正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學(xué)生提出我們討論的都是邊長為整數(shù)的直角三角形情況,那么邊長是小數(shù)時,結(jié)論是否成立?教師就演示以下實驗。)
利用方格紙,我們方便計算直角邊為整數(shù)的情況,若直角邊為小數(shù)時,所得到的正方形面積之間也有如上關(guān)系嗎?
將網(wǎng)格線去掉,利用《幾何畫板》的度量工具可以看到SP+SQ=SR.
(利用幾何畫板的高效性、動態(tài)性反映這一過程,讓學(xué)生體會到更多的特殊情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻.)
7、我們這節(jié)課是探索直角三角形三邊數(shù)量關(guān)系.至此,你對直角三角形三邊的數(shù)量關(guān)系有什么發(fā)現(xiàn)?
(面積是邊長的平方,面積間的等量關(guān)系轉(zhuǎn)化為邊長間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于下邊的平方.)
(這一問題的結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié),交流,表達(dá).)
8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進(jìn)而給出字母表達(dá)式.一段緊張的探索過程之后,播放一段有關(guān)勾股歷史的錄音.
(這樣既活躍了課堂氣氛,又展現(xiàn)了勾股歷史,激發(fā)學(xué)生熱愛祖國悠久歷史文化,
激勵學(xué)生發(fā)奮學(xué)習(xí)的情感.)
9、閱讀課本,提出問題
(讓學(xué)生有將知識內(nèi)化為自己的知識結(jié)構(gòu)的過程,教師巡視,對有困難的同學(xué)給予幫助,促進(jìn)全班同學(xué)共同進(jìn)步,體現(xiàn)面向全體的教學(xué)原則.)
(三)課堂練習(xí) 鞏固新知
1.完成課本第45頁練習(xí)第1題、第2題.
(1)求下列直角三角形中未知邊的長:
(2)求下列圖中未知數(shù)x、y、z的值:
(充分利用課本,在前面閱讀的基礎(chǔ)上做課本上的練習(xí)題。提問學(xué)生口答,老師再規(guī)范板書一題.通過對勾股定理的基本應(yīng)用,讓學(xué)生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)
2、 如圖:一塊長約80 m、寬約60 m的長方形草坪,被幾個不自覺的學(xué)生沿對角線踏出了一條斜“路”,這種情況在生活中時有發(fā)生。請問同學(xué)們:
(1)這幾位同學(xué)為什么不走正路,走斜“路”?
(2)他們知道走斜“路”比正路少走幾步嗎?
(3)他們這樣這樣做,值得嗎?
(這是一道貼近學(xué)生生活的實例,在勾股定理的運(yùn)用中滲透了德育教育.)
(四)課堂小結(jié) 布置作業(yè)
1、通過本節(jié)課的學(xué)習(xí),大家有什么收獲?有什么疑問?你認(rèn)為還有什么要繼續(xù)探索的問題?
(學(xué)生總結(jié)本堂課的收獲,可以是知識、應(yīng)用、數(shù)學(xué)思想方法以及獲取新知的途徑等.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生的綜合表達(dá)能力.如果學(xué)生沒有提出繼續(xù)要探討的問題,教師可以引導(dǎo)學(xué)生思考:直角三角形的三邊有特殊的等量關(guān)系,一般三角形三邊是否也存在一種等量關(guān)系呢?再展示上課開始的問題:如果一個三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內(nèi)容,首尾呼應(yīng),激發(fā)學(xué)生不滿足于現(xiàn)狀,有不斷提出新問題的欲望,即培養(yǎng)學(xué)生的創(chuàng)新意識.)
2、作業(yè)
(1)課本第471頁第2題,并完成第45頁的實驗。
(2)在以下網(wǎng)頁中你可以找到有關(guān)勾股定理的豐富的內(nèi)容,請你結(jié)合本節(jié)課的學(xué)習(xí)
和從網(wǎng)上或書本上自學(xué)到的知識寫一篇有關(guān)勾股定理的小論文,題目自定,一周后交給課代表并展示交流.
n
(作業(yè)的多元化、多層次,有利于全體學(xué)生的全面素質(zhì)發(fā)展。)教育大全
七、教學(xué)設(shè)計說明:
本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察--猜想--歸納--驗證--應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想.
本節(jié)課從學(xué)生的原有認(rèn)知出發(fā)提出問題,揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理.教科書設(shè)計了在方格紙上通過計算面積的方法探究勾股定理的活動,在此基礎(chǔ)上,為了更好地展示這一探索過程,本節(jié)課先讓學(xué)生回顧利用圖形面積探求數(shù)學(xué)公式的經(jīng)歷,以此確定研究方法.繼而設(shè)計了剪紙活動,從中引發(fā)學(xué)生的猜想,再利用幾何畫板這一工具帶領(lǐng)學(xué)生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學(xué)生充分經(jīng)歷這一觀察、猜想、歸納的過程.其中SR的求法是探求過程中的難點(diǎn),應(yīng)讓學(xué)生充分地思考、討論、總結(jié)方法.通過對特殊到一般的考查,讓學(xué)生主動建立由數(shù)到形,由形到數(shù)的聯(lián)想,從中使學(xué)生不斷積累數(shù)學(xué)活動的經(jīng)驗,歸納出直角三角形三邊數(shù)量之間的關(guān)系.在教學(xué)中鼓勵學(xué)生采用觀察分析,自主探索,合作交流的學(xué)習(xí)方法,培養(yǎng)學(xué)生主動的動手,動腦,動口的學(xué)習(xí)習(xí)慣和能力,使學(xué)生真正成為學(xué)習(xí)的主人.
除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.
練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.題目的設(shè)計中滲透了德育教育,拓展了學(xué)生的空間思維,使得一節(jié)幾何課全面地考查了學(xué)生的各方面思維.
讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識的途徑等方面.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.
作業(yè)為了達(dá)到提高鞏固的目的,提供給學(xué)生網(wǎng)址是為了拓展學(xué)生的視野,以期學(xué)生能主動地探求對勾股定理更深入的認(rèn)識.
yJS21.com更多精選幼兒園教案閱讀
勾股定理教案15篇
俗話說,做什么事都要有計劃和準(zhǔn)備。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,為了防止學(xué)生抓不住重點(diǎn),教案就顯得非常重要,教案有利于老師在課堂上與學(xué)生更好的交流。寫好一份優(yōu)質(zhì)的幼兒園教案要怎么做呢?或許你正在查找類似"勾股定理教案15篇"這樣的內(nèi)容,歡迎閱讀,希望大家能夠喜歡!
勾股定理教案【篇1】
1.靈活應(yīng)用勾股定理及逆定理解決實際問題.
2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.
⑵依題意畫出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因為242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR―∠QPS=45°.
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.
例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;
⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.
勾股定理教案【篇2】
(一)創(chuàng)設(shè)情景
多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進(jìn)入三樓滅火?
問題的設(shè)計有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。這種以實際問題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。
(二)動手操作
⒈課件出示課本P99圖19.2.1:
觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結(jié)論?
學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學(xué)生用語言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。
⒉緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學(xué)生的動手操作、合作交流,來獲取知識,這樣設(shè)計有利于突破難點(diǎn),也讓學(xué)生體會到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。
⒊再問:當(dāng)邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計算。這樣設(shè)計的目的是讓學(xué)生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。
(三)歸納驗證
【歸納】通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,,使學(xué)生學(xué)會“文字語言”與“數(shù)學(xué)語言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識,解決問題。
【驗證】先后三次驗證“勾股定理”這一結(jié)論,期間學(xué)生動手進(jìn)行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學(xué)生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。
(四)問題解決
⒈讓學(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會到成功的快樂。
⒉自學(xué)課本P101例1,然后完成P102練習(xí)。
(五)課堂小結(jié)
1.小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。
2.教師用多媒體介紹“勾股定理史話”
①《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
②康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。
目的是對學(xué)生進(jìn)行愛國主義教育,激勵學(xué)生奮發(fā)向上。
(六)布置作業(yè)
課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會定理與實際生活的聯(lián)系。
以上內(nèi)容,我僅從“說教材”,“說學(xué)情”、“說教法”、“說學(xué)法”、“說教學(xué)過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對本次說課提出寶貴的意見,謝謝!
勾股定理教案【篇3】
1、勾股定理
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
即直角三角形兩直角的平方和等于斜邊的平方.
因此,在運(yùn)用勾股定理計算三角形的邊長時,要注意如下三點(diǎn):
(1)注意勾股定理的使用條件:只對直角三角形適用,而不適用于銳角三角形和鈍角三角形;
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
(3)注意勾股定理公式的變形:在直角三角形中,已知任意兩邊,可求第三邊長.即c2=a2+b2,a2=c2-b2,b2=c2-a2.
2.學(xué)會用拼圖法驗證勾股定理
拼圖法驗證勾股定理的基本思想是:借助于圖形的面積來驗證,依據(jù)是對圖形經(jīng)過割補(bǔ)、拼接后面積不變的原理.
如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.
請讀者證明.
如上圖示,在圖(1)中,利用圖1邊長為a,b,c的四個直角三角形拼成的一個以c為邊長的正方形,則圖2(1)中的小正方形的邊長為(b-a),面積為(b-a)2,四個直角三角形的面積為4×ab=2ab.
由圖(1)可知,大正方形的面積=四個直角三角形的面積+小正方形的的面積,即c2=(b-a)2+2ab,則a2+b2=c2問題得證.
請同學(xué)們自己證明圖(2)、(3).
3.在數(shù)軸上表示無理數(shù)
將在數(shù)軸上表示無理數(shù)的問題轉(zhuǎn)化為化長為無理數(shù)的線段長問題.第一步:利用勾股定理拆分出哪兩條線段長的平方和等于所畫線段(斜邊)長的平方,注意一般其中一條線段的長是整數(shù);第二步:以數(shù)軸原點(diǎn)為直角三角形斜邊的頂點(diǎn),構(gòu)造直角三角形;第三步:以數(shù)軸原點(diǎn)圓心,以斜邊長為半徑畫弧,即可在數(shù)軸上找到表示該無理數(shù)的點(diǎn).
二、典例精析
例1如果直角三角形的斜邊與一條直角邊的長分別是13cm和5cm,那么這個直角三角形的面積是cm2.
分析:欲求直角三角形的面積,已知一直角三角形的斜邊與一條直角邊的長,則求得另一直角邊的長即可.根據(jù)勾股定理公式的變形,可求得.
解:由勾股定理,得
132-52=144,所以另一條直角邊的長為12.
所以這個直角三角形的面積是×12×5=30(cm2).
例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點(diǎn)A爬到
頂點(diǎn)B,則它走過的最短路程為()
A.B.C.3aD.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
各棱長相等,因此只有一種展開圖.
解:將正方體側(cè)面展開
勾股定理教案【篇4】
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、教學(xué)目標(biāo):
根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標(biāo)。
知識技能:
1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形
過程與方法:
1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程
2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應(yīng)用
3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。
情感態(tài)度:
1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系
2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神
(三)、學(xué)情分析:
盡管已到初二下學(xué)期學(xué)生知識增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
二、教學(xué)過程:
本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的,
(一)、復(fù)習(xí)回顧: 復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的'知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)
因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機(jī),讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點(diǎn),我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
勾股定理教案【篇5】
1.掌握勾股定理,了解利用拼圖驗證勾股定理的方法.
1.學(xué)會用拼圖的方法驗證勾股定理,培養(yǎng)學(xué)生的'創(chuàng)新能力和解決實際問題的能力.
2.在拼圖過程中,鼓勵學(xué)生大膽聯(lián)想,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識.
利用拼圖的方法驗證勾股定理,是我國古代數(shù)學(xué)家的一大貢獻(xiàn).借助對學(xué)生進(jìn)行愛國主義教育.并在拼圖的過程中獲得學(xué)習(xí)數(shù)學(xué)的快樂,提高學(xué)習(xí)數(shù)學(xué)的興趣.
教師引導(dǎo)和學(xué)生自主探索相結(jié)合的方法.
在用拼圖的方法驗證勾股定理的過程中.教師要引導(dǎo)學(xué)生善于聯(lián)想,將形的問題與數(shù)的問題聯(lián)系起來,讓學(xué)生自主探索,大膽地聯(lián)系前面知識,推導(dǎo)出勾股定理,并自己嘗試用勾股定理解決實際問題.
1.每個學(xué)生準(zhǔn)備一張硬紙板;
[師]我們曾學(xué)習(xí)過整式的運(yùn)算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的內(nèi)容.誰還能記得當(dāng)時這兩個公式是如何推出的?
[生]利用多項式乘以多項式的法則從公式的左邊就可以推出右邊.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.
[生]還可以用拼圖的方法來推出.例如:(a+b)2=a2+2ab+b2.我們可以用一個邊長為a的正方形,一個邊長為b的正方形,兩個長和寬分別為a和b的長方形可拼成如下圖所示的邊長為(a+b)的正方形,那么這個大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2.所以(a+b)2=a2+2ab+b2.
勾股定理教案【篇6】
一、說教材分析
本節(jié)研究的是勾股定理的探索及其應(yīng)用。它從邊的角度進(jìn)一步對直角三角形的特征進(jìn)行了刻畫。 它的主要內(nèi)容是探索勾股定理,驗證勾股定理的正確性,在此基礎(chǔ)上,讓學(xué)生利用勾股定理來解決一些實際問題。本節(jié)課是在學(xué)生認(rèn)識直角三角形的基礎(chǔ)上,在了解正方形和等腰直角三角形以后進(jìn)行學(xué)習(xí)的,它是前面所學(xué)知識的延伸和拓展,又是后面學(xué)習(xí)勾股定理逆定理的基礎(chǔ),具有承上啟下的作用。
二、說教學(xué)目標(biāo)
教學(xué)目標(biāo)的確定:教學(xué)目標(biāo)是一堂課的中心任務(wù),它只有在豐富多彩的數(shù)學(xué)活動中才能充分實現(xiàn)。一堂課的教學(xué)目標(biāo)應(yīng)全面、適度、明確、具體,便于檢測。因此根據(jù)學(xué)生已有的認(rèn)知基礎(chǔ)和新課程標(biāo)準(zhǔn),我確定了本節(jié)課教學(xué)目標(biāo)為:
1、知識技能:
(1)了解勾股定理的文化背景,體驗勾股定理的探索和驗證過程。
(2)運(yùn)用勾股定理進(jìn)行簡單的計算和解釋生活中的實際問題。
(3)運(yùn)用勾股定理會在數(shù)軸上畫出表示無理數(shù)的點(diǎn)。
2、數(shù)學(xué)思考:
在勾股定理的探索、從實際問題抽象出直角三角形和在數(shù)軸上畫出表示無理數(shù)的點(diǎn)的過程中,發(fā)展合情推理能力,初步體會、掌握轉(zhuǎn)化和數(shù)形結(jié)合的思想方法。
3、解決問題:
通過拼圖、探究活動,體驗數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。學(xué)會與人合作并能與他人交流思維的過程和探究的結(jié)果。能夠運(yùn)用勾股定理解決直角三角形,在數(shù)軸上畫出表示無理數(shù)的點(diǎn)等有關(guān)實際問題。
4、情感態(tài)度:
(1)通過對勾股定理歷史的了解和實例應(yīng)用,體會勾股定理的文化價值,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情。
(2)通過獲得成功的經(jīng)驗和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
(3)通過研究一系列富有探究性的問題,培養(yǎng)學(xué)生與他人交流、合作的意識和品質(zhì)。
三、說教學(xué)重、難點(diǎn)
教學(xué)重、難點(diǎn)的確定:關(guān)注學(xué)生是否能與同伴進(jìn)行有效的合作交流;關(guān)注學(xué)生是否積極的進(jìn)行思考;關(guān)注學(xué)生能否探索出解決問題的方法。
重點(diǎn):通過探索、拼圖驗證勾股定理及勾股定理的應(yīng)用過程,使學(xué)生獲得一些研究問題與合作交流的方法經(jīng)驗。
難點(diǎn):利用數(shù)形結(jié)合的方法探索發(fā)現(xiàn)、驗證勾股定理及其在實際生活中的應(yīng)用。
四、知識反映出來的技能、能力、方法、德育等因素
本節(jié)知識通過 “ 探索發(fā)現(xiàn)---拼圖實踐—探索驗證—分析結(jié)果—運(yùn)用定理 ” 等活動過程,使學(xué)生進(jìn)一步理解勾股定理,并從中學(xué)會思考,學(xué)會探索,學(xué)會運(yùn)用,學(xué)會交流,體會知識反映出來的豐富的文化內(nèi)涵,指導(dǎo)學(xué)生認(rèn)識現(xiàn)實世界中蘊(yùn)涵著的數(shù)學(xué)信息。
五、教學(xué)方法
數(shù)學(xué)知識、數(shù)學(xué)思想和方法必須由學(xué)生在現(xiàn)實的數(shù)學(xué)活動實踐中理解和發(fā)展;教學(xué)中,以學(xué)生為本位,充分挖掘教材的空間,為學(xué)生搭建動手實踐、自主探索、合作交流的平臺;
注重讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,充分調(diào)動學(xué)生的學(xué)習(xí)積極性,并通過這個過程,使學(xué)生體驗學(xué)習(xí)成功的樂趣,在積極的思維中獲取知識,發(fā)展能力。
六、教學(xué)程序設(shè)計:
為充分發(fā)揮學(xué)生的主體性和教師的主導(dǎo)輔助作用,設(shè)計了以下幾個環(huán)節(jié):
(1)創(chuàng)設(shè)情境,引入新課
問題
某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊能否進(jìn)入三樓滅火?
師生行為:教師出示照片及圖片,并提出問題,學(xué)生觀察圖片發(fā)表見解。
設(shè)計意圖:從現(xiàn)實生活中提出勾股定理,為學(xué)生能夠積極主動的投入到探索活動創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)熱情。同時為探索勾股定理提供背景材料。達(dá)到引入新課的目的。
(1)獨(dú)立探究,合作交流。
講述數(shù)學(xué)家畢達(dá)哥拉斯的故事
問題
A、B、C的面積有什么關(guān)系?
SA+SB=SC
直角三角形三邊有什么關(guān)系?
兩直邊的平方和等于斜邊的平方
設(shè)計意圖:問題是思維的起點(diǎn),通過激發(fā)學(xué)生好奇、探究和主動學(xué)習(xí)的欲望。利用面積相等法,讓學(xué)生發(fā)現(xiàn)以直角三角形兩直角邊為邊長的正方形的面積,以斜邊為邊長的正方形的面積之間的關(guān)系。降低學(xué)生學(xué)習(xí)難度,從(3)自主實踐,探索驗證
《課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)?!币髮W(xué)生分學(xué)習(xí)小組,動手實踐,積極思考,獲得技能與解決問題的方法。關(guān)注學(xué)生動手實踐,關(guān)注學(xué)生主動探索與合作,關(guān)注學(xué)生積極思考,給學(xué)生思維表達(dá)的時間、空間,讓學(xué)生經(jīng)歷探索知識的過程,并在這個過程中得到發(fā)展.。
兩種拼圖方案
1、2、
師生行為:教師演示動畫和圖片,同時提出問題,學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動手拼接,教師深入小組活動傾聽學(xué)生的交流,幫助、指導(dǎo)學(xué)生完成拼圖活動。學(xué)生展示分割、拼接的過程。
設(shè)計意圖:通過觀察、拼圖、探究活動,給學(xué)生充分的時間與空間討論、交流,鼓勵學(xué)生敢于發(fā)表自己的見解,感受合作的重要性,充分調(diào)動學(xué)生思維的積極性,發(fā)展形象思維,使學(xué)生對定理更加深刻,通過這一教學(xué)過程來達(dá)到突破難點(diǎn)的目的。
(4)應(yīng)用定理,解決問題
數(shù)學(xué)源于實踐,運(yùn)用于實踐;開放性處理教材,鼓勵學(xué)生充分地發(fā)表意見,表現(xiàn)自我,讓學(xué)生在教師營造的“創(chuàng)新土壤”中成為主人;給學(xué)生思維以廣闊的空間,培養(yǎng)學(xué)生從多角度運(yùn)用所學(xué)知識尋求解決問題的能力.
勾股定理教案【篇7】
一、例題的意圖分析
例1(P83例2)讓學(xué)生養(yǎng)成利用勾股定理的逆定理解決實際問題的意識。
例2(補(bǔ)充)培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識。
二、課堂引入
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法。
三、例習(xí)題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫出圖形;
⑶依題意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;
⑷因為242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR-∠QPS=45°。
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識。
例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;
⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形。
解略。
四、課堂練習(xí)
1.小強(qiáng)在操場上向東走80m后,又走了60m,再走100m回到原地。小強(qiáng)在操場上向東走了80m后,又走60m的方向是。
2.如圖,在操場上豎直立著一根長為2米的測影竿,早晨測得它的影長為4米,中午測得它的影長為1米,則A、B、C三點(diǎn)能否構(gòu)成直角三角形?為什么?
3.如圖,在我國沿海有一艘不明國籍的輪船進(jìn)入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個基地前去攔截,六分鐘后同時到達(dá)C地將其攔截。已知甲巡邏艇每小時航行120海里,乙巡邏艇每小時航行50海里,航向為北偏西40°,問:甲巡邏艇的航向
勾股定理教案【篇8】
隨著社會的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識的學(xué)習(xí),更重要的是體現(xiàn)知識的認(rèn)知發(fā)展過程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課。《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動進(jìn)行觀察、實驗、猜想、驗證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
本節(jié)知識是在學(xué)生掌握了直角三角形的三個性質(zhì):直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個非常重要的性質(zhì),它揭示了一個直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無論是課前準(zhǔn)備和課上交流以及課下活動都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實際生活中的重要作用,是進(jìn)行愛國教育的重要題材!
本節(jié)課的教育對象是初二下的學(xué)生,共性是思維活躍,參與意識較強(qiáng)。而且一般家庭都有電腦,對教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
2、會利用勾股定理進(jìn)行直角三角形的簡單計算。
經(jīng)歷課前預(yù)習(xí)和課上觀察、分析、歸納、猜想、驗證并運(yùn)用實踐的過程,了解數(shù)學(xué)知識的生成與發(fā)展過程。通過了解勾股定理的幾個著名證法(趙爽證法、歐幾里得證法等),使學(xué)生感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內(nèi)涵。使學(xué)生自主學(xué)習(xí)能力和分析問題解決問題的能力得到提高。培養(yǎng)與人合作的意識。
1、通過自主學(xué)習(xí)培養(yǎng)學(xué)生探究、發(fā)現(xiàn)問題的能力,體驗獲取數(shù)學(xué)知識的過程。
2、通過小組合作、探索培養(yǎng)學(xué)生的團(tuán)隊精神,以及不畏艱難,實事求是的學(xué)習(xí)態(tài)度和嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣。
3、通過了解有關(guān)勾股定理的中西歷史知識,激發(fā)學(xué)生的愛國熱情,培養(yǎng)學(xué)生的民族自豪感。
本節(jié)課在教材處理上,先讓學(xué)生帶著三個問題預(yù)習(xí)完成網(wǎng)上作業(yè),自制4個兩條直角邊不等的全等的直角三角形,準(zhǔn)備一張坐標(biāo)紙。從而初步了解勾股定理的歷史和內(nèi)容以及證法,并制作成課件或打印資料,為課上活動做了充分的準(zhǔn)備。為突破本課重、難點(diǎn)起到了至關(guān)重要的作用。勾股定理這部分內(nèi)容共計兩課時,本節(jié)課是第一課時。教學(xué)重點(diǎn)定位為勾股定理的探索過程及簡單應(yīng)用。教學(xué)難點(diǎn)是勾股定理的證明。把勾股定理的應(yīng)用放在第二課時進(jìn)行專題訓(xùn)練。
(一)創(chuàng)設(shè)情境,引入課題。(二)自主探索,獲得定理(三)獨(dú)立思考,應(yīng)用定理(四)暢所欲言,歸納小結(jié)。
勾股定理教案【篇9】
(一)教材地位
這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
(二)教學(xué)目標(biāo)
1、知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實際問題。
2、過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。
3、情感態(tài)度與價值觀: 激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。
(三)教學(xué)重點(diǎn)
經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
二、教法與學(xué)法分析學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng).教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。三、教學(xué)過程設(shè)計(一)創(chuàng)設(shè)情境,提出問題(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票大會會標(biāo)設(shè)計意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值。(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進(jìn)入三樓滅火?設(shè)計意圖:以實際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。(二)實驗操作模型構(gòu)建1、等腰直角三角形(數(shù)格子)2、一般直角三角形(割補(bǔ))問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)設(shè)計意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。通過以上實驗歸納總結(jié)勾股定理。設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊—— 一般的認(rèn)知規(guī)律。(三)回歸生活應(yīng)用新知讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。(四)知識拓展鞏固深化基礎(chǔ)題,情境題,探索題。設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展。知識的運(yùn)用得到升華?;A(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題?你能解決所提出的問題嗎?設(shè)計意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維。情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。(五)感悟收獲布置作業(yè)這節(jié)課你的收獲是什么?作業(yè):1、課本習(xí)題2.12、搜集有關(guān)勾股定理證明的資料。
勾股定理教案【篇10】
探索勾股定理第1課時教學(xué)設(shè)計
一、教學(xué)目標(biāo)
(1知識與技能目標(biāo):用數(shù)格子(或割、補(bǔ)等)的方法體驗勾股定理的探索過程,)會初步運(yùn)用勾股定理進(jìn)行簡單的計算和實際運(yùn)用。
(2)過程與方法目標(biāo):在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗證”的數(shù)學(xué)過程,并體會數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想方法。
(3)情感態(tài)度與價值觀目標(biāo):在探索勾股定理的過程中,體驗獲得成功的快樂;通過介紹勾股定理的由來,激勵學(xué)生發(fā)奮學(xué)習(xí)。
二、教學(xué)重點(diǎn)及難點(diǎn)
重點(diǎn):經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
難點(diǎn):以直角三角形為邊的正方形面積的計算。
教學(xué)過程:
(一)提出問題
首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來米長的云梯,如果梯子的底部離墻基的距離是米,請問消防隊員能否進(jìn)入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。
設(shè)計意圖:這樣的設(shè)計是以實際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出本節(jié)課探究的主題。
(二)實驗驗證
1、問題探究
(1邊數(shù)為整數(shù)的直角三角形
類型一:等腰直角三角形。
觀察下圖,你能發(fā)現(xiàn)各圖中三個正方形的面積之間有何關(guān)系嗎?
學(xué)生通過觀察,歸納發(fā)現(xiàn):
結(jié)論1:以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
類型二:一般的直角三角形
由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?
觀察下圖,你能發(fā)現(xiàn)各圖中三個正方形的面積之間有何關(guān)系嗎?
結(jié)論2:“以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
做一做:
(1)你能用直角三角形的邊長,b,c來表示上圖中正方形的面積嗎?
(2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?
(3)分別以3cm,4cm為直角邊作出直角三角形,并測量斜邊的長度,(2)中的規(guī)律對這個三角形仍然成立嗎?
結(jié)論3:直角三角形兩直角邊的平方和,等于斜邊的平方。
設(shè)計意圖:由直角三角形三邊長為邊的三個正方形的面積關(guān)系,發(fā)現(xiàn)直角三角形三邊的平方關(guān)系,初步得到勾股定理的內(nèi)容.同時,引導(dǎo)學(xué)生具體畫出一個直角三角形,通過計算,進(jìn)一步驗證勾股定理。
2)數(shù)不為整數(shù)的直角三角形
進(jìn)一步驗證上面的結(jié)論,直角三角形三邊為、1.
2、上面猜想的數(shù)量關(guān)系還成立嗎?
設(shè)計意圖:由于邊數(shù)為整數(shù)直角三角形的三邊的平方關(guān)系,對于一般的直角三角形是否也成立?在這里,讓學(xué)生利用更細(xì)密的網(wǎng)格紙驗證 ,進(jìn)一步探討出本節(jié)課的重點(diǎn)----勾股定理。通過邊數(shù)為整數(shù)和不為整數(shù)兩方面的分類探究,充分地讓學(xué)生經(jīng)歷了探索勾股定理的過程,得出的結(jié)論也更具有一般性,較好的突出了重點(diǎn),突破了難點(diǎn)。
(三)總結(jié)歸納 勾股定理:
為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個直角三角形,通過測量、計算來驗證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項基本能力。 三角形兩直角邊的平方和等于斜邊的平方.如果用[a,b,c]分別表示直角三角形的兩直角邊和斜邊,那么[a2+b2=c2]。
數(shù)學(xué)小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名。(在西方文獻(xiàn)中又稱為畢達(dá)哥拉斯定理)
設(shè)計意圖:通過介紹勾股定理由來的歷史,激發(fā)學(xué)生熱愛祖國,激勵學(xué)生發(fā)奮學(xué)習(xí)。
四)知識拓展 ,鞏固深化
讓學(xué)生解決開頭的實際問題
設(shè)計意圖:讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。
1.情境題:
小明媽媽買了一部29in(74cm)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58cm長和46cm寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)知識源于生活,并用于生活。
2.探索題:
做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。
設(shè)計意圖:提升難度,學(xué)生通過交流討論的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。
(五)課堂小結(jié),概括要點(diǎn)
教師提問:
1.這一節(jié)課我們一起學(xué)習(xí)了哪些知識和思想方法?
2.對這些內(nèi)容你有什么體會?與同伴進(jìn)行交流。
在學(xué)生自由發(fā)言的基礎(chǔ)上,師生共同總結(jié):
1.知識:勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.如果用[a,b,c]分別表示直角三角形的兩直角邊和斜邊,那么[a2+b2=c2]。
2.思想:分類討論、特殊―一般―特殊、形結(jié)合思想。
設(shè)計意圖:鼓勵學(xué)生積極大膽發(fā)言,可增進(jìn)師生、生生之間的交流、互動,培養(yǎng)學(xué)生語言表達(dá)和交流的能力。
(六)布置作業(yè),思維延伸
1.教科書習(xí)題。
2.思考:是不是任意的三角形的三邊長都滿足[a2+b2=c2]?若不是,你能探究出它們滿足什么關(guān)系嗎?和同學(xué)們交流。
設(shè)計意圖:鞏固基礎(chǔ)知識;引發(fā)思考,強(qiáng)化認(rèn)識勾股定理適用的條件。對于銳角三角形和鈍角三角形,引導(dǎo)學(xué)生利用本節(jié)課的方法得出相應(yīng)的結(jié)論,將本節(jié)課的研究方法延伸到課外。
勾股定理教案【篇11】
一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(多數(shù)為具體的知識和方法)。
二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時對大家進(jìn)行思想教育。
通過本節(jié)課的教學(xué),讓我更深刻地認(rèn)識到:
1.新課改理念只有全面滲透到教育教學(xué)工作中,與平時工作緊密結(jié)合,才能夠促進(jìn)學(xué)生的全面發(fā)展;
2.教師要充分利用課堂內(nèi)容為整體課程目標(biāo)服務(wù),不要僅限于本節(jié)課的知識目標(biāo)與要求,就知識“教”知識,而要通過知識的學(xué)習(xí)獲得學(xué)習(xí)這些知識的方法,同時,還要充分利用課堂對學(xué)生進(jìn)行情感態(tài)度價值觀的教育,真正讓教材成為教育學(xué)生的素材,而不是學(xué)科教學(xué)的全部;
3.要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機(jī)會。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現(xiàn)教育的本來目標(biāo),而且也一定能讓學(xué)生“考出”好的成績。
勾股定理教案【篇12】
學(xué)習(xí)目標(biāo)
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2.探索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)型結(jié)合的思想。
重點(diǎn)難點(diǎn)
或?qū)W習(xí)建議學(xué)習(xí)重點(diǎn):用面積的方法說明勾股定理的正確.
學(xué)習(xí)難點(diǎn):勾股定理的'應(yīng)用.
學(xué)習(xí)過程教師
二次備課欄
自學(xué)準(zhǔn)備與知識導(dǎo)學(xué):
這是1955年希臘為紀(jì)念一位數(shù)學(xué)家曾經(jīng)發(fā)行的郵票。
郵票上的圖案是根據(jù)一個著名的數(shù)學(xué)定理設(shè)計的。
學(xué)習(xí)交流與問題研討:
1、探索
問題:分別以圖中的直角三角形三邊為邊向三角形外
作正方形,小方格的面積看做1,求這三個正方形的面積?
S正方形BCED=S正方形ACFG=S正方形ABHI=
發(fā)現(xiàn):
2、實驗
在下面的方格紙上,任意畫幾個頂點(diǎn)都在格點(diǎn)上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。
請完成下表:
S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系
112
145
41620
91625
發(fā)現(xiàn):
如何用直角三角形的三邊長來表示這個結(jié)論?
這個結(jié)論就是我們今天要學(xué)習(xí)的勾股定理:
如圖:我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾
練習(xí)檢測與拓展延伸:
練習(xí)1、求下列直角三角形中未知邊的長
練習(xí)2、下列各圖中所示的線段的長度或正方形的面積為多少。
(注:下列各圖中的三角形均為直角三角形)
例1、如圖,在四邊形中,∠,∠,,求.
檢測:
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;
(2)b=8,c=17,則S△ABC=________。
2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10
3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()
A.12cmB.10cmC.8cmD.6cm
4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)
5、飛機(jī)在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機(jī)距離這個男孩5千米,飛機(jī)每小時飛行多少千米?
課后反思或經(jīng)驗總結(jié):
1、什么叫勾股定理;
2、什么樣的三角形的三邊滿足勾股定理;
3、用勾股定理解決一些實際問題。
勾股定理教案【篇13】
一、教學(xué)目標(biāo)
1.靈活應(yīng)用勾股定理及逆定理解決實際問題.
2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實際問題.
2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實際問題.
3.難點(diǎn)的突破方法:
三、課堂引入
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.
四、例習(xí)題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因為242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.
例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;
⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.
勾股定理教案【篇14】
教學(xué)目標(biāo)具體要求:
1.知識與技能目標(biāo):會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3.情感態(tài)度與價值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為xx。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是xx。
3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長?
1、如圖,公路上A,B兩點(diǎn)相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車站E,
(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?
(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?
2、如圖,用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長BC為10cm.當(dāng)折疊時,頂點(diǎn)D落在BC邊上的'點(diǎn)F處(折痕為AE).想一想,此時EC有多長?
3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,求DE的長。
談一談你這節(jié)課都有哪些收獲?
三、課堂練習(xí)以上習(xí)題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學(xué)生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識和應(yīng)用能力。
勾股定理教案【篇15】
一、回顧交流,合作學(xué)習(xí)
【活動方略】
活動設(shè)計:教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報,匯報時可借助投影儀,要求學(xué)生上臺匯報,最后教師歸納.
【問題探究1】(投影顯示)
飛機(jī)在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機(jī)距離小明頭頂5000米,問:飛機(jī)飛行了多少千米?
思路點(diǎn)撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時飛行多少千米,就要知道飛機(jī)在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出BC的長.(3000千米)
【活動方略】
教師活動:操作投影儀,引導(dǎo)學(xué)生解決問題,請兩位學(xué)生上臺演示,然后講評.
學(xué)生活動:獨(dú)立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.
【問題探究2】(投影顯示)
一個零件的形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?
思路點(diǎn)撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.
【活動方略】
教師活動:操作投影儀,關(guān)注學(xué)生的思維,請兩位學(xué)生上講臺演示之后再評講.
學(xué)生活動:思考后,完成“問題探究2”,小結(jié)方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD為直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此這個零件符合要求.
【問題探究3】
甲、乙兩位探險者在沙漠進(jìn)行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?
思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
【活動方略】
教師活動:操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請兩位學(xué)生上講臺“板演”.
學(xué)生活動:課堂練習(xí),與同伴交流或舉手爭取上臺演示
勾股定理課件教案12篇
所有老師都必須在教課前準(zhǔn)備自己的教案和教學(xué)資源。為了能夠?qū)懗鐾昝赖慕贪负徒虒W(xué)資源,老師們都需要花費(fèi)相應(yīng)的心思與精力。在編寫教案和課件時,老師們尤其需要注意確保教學(xué)重點(diǎn)不會被忽略。是否也曾有過編寫教案和課件時的苦惱呢?那么,本文的勾股定理課件教案為大家量身打造,希望能夠為您提供更多的幫助!
勾股定理課件教案【篇1】
尊敬的各位領(lǐng)導(dǎo)、各位老師,大家好:
我叫李朝紅,是第十四中學(xué)的一名教師。我今天說課的題目《勾股定理的逆定理》,選自人教課標(biāo)實驗版教科書數(shù)學(xué)八年級下冊第十八章第二節(jié),本節(jié)課共分兩個課時,我今天分析的是第一個課時,下面我將從教材、教法學(xué)法、教學(xué)過程、教學(xué)反思四個方面進(jìn)行闡述。
一、教材分析
1、教材的地位和作用:
在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)學(xué)習(xí)了勾股定理,全等三角形的判定等相關(guān)知識,為本節(jié)課的學(xué)習(xí)打好了基礎(chǔ),學(xué)習(xí)好本節(jié)課不但可以鞏固學(xué)生已有的知識,而且為后面利用勾股定理的逆定理判斷一個三角形是否直角三角形等相關(guān)知識的學(xué)習(xí)做好了鋪墊。
2、教學(xué)目標(biāo)
教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實是實施課堂教學(xué)的關(guān)鍵。考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實際情況,我制定了如下教學(xué)目標(biāo)
知識與技能:掌握勾股定理的逆定理,會用勾股定理的逆定理判斷一個三角形是否直角三角形。
過程與方法:通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成
過程,體會數(shù)形結(jié)合和由特殊到一般的數(shù)學(xué)思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
情感、態(tài)度、價值觀:在探究勾股定理的逆定理的活動中,滲透與他人交流、合作的意識和探究精神.
3、重點(diǎn)難點(diǎn)
本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)
重點(diǎn):理解并掌握勾股定理的逆定理,并會應(yīng)用。
難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。
二、教法學(xué)法分析
八年級學(xué)生的特點(diǎn)是思維比較活躍,喜歡發(fā)表自己的見解,善于進(jìn)行小組合作學(xué)習(xí),所以我將采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)相結(jié)合的方法,老師為主導(dǎo),學(xué)生為主體,充分調(diào)動學(xué)生的學(xué)習(xí)積極性,讓學(xué)生動手操作,動腦思考,動口表達(dá),積極參與到本節(jié)課的教學(xué)過程中來,在鍛煉學(xué)生思考、觀察、實踐能力的同時,使其科學(xué)文化修養(yǎng)與思想道德修養(yǎng)進(jìn)一步提升。
教法學(xué)法分析完畢,我再來分析一下教學(xué)過程,這是我本次說課的重點(diǎn)。
三、教學(xué)過程分析:
(一)創(chuàng)設(shè)情景,引入新課
1、展示圖片:古埃及人制作直角的方法
2、讓學(xué)生試一試用一根繩子確定直角
設(shè)計意圖:通過古埃及人制作直角的方法,提出讓學(xué)生動手操作,進(jìn)而使學(xué)生產(chǎn)生好奇心:“這樣就能確定直角嗎”,激發(fā)學(xué)生的求知欲,點(diǎn)燃其學(xué)習(xí)的激情,充分調(diào)動學(xué)生的學(xué)習(xí)積極性 ,同時也使學(xué)生感受到幾何來源于生活,服務(wù)于生活的道理,體會數(shù)學(xué)的價值。
(二)動手檢測,提出假設(shè)
在本環(huán)節(jié)中通過情境中的問題,引導(dǎo)學(xué)生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm
上面三組線段為邊畫出三角形,猜測驗證出其形狀。
再引導(dǎo)啟發(fā)誘導(dǎo)學(xué)生從上面的活動中歸納思考:如果一個三角形的三邊a,b,c滿足a2+b2=c2,那這個三角形是直角三角形嗎?在整個過程的活動中,盡量給學(xué)生足夠的時間和空間,以平等身份參與到學(xué)生活動中來,對其實踐活動予以指導(dǎo)。讓學(xué)生通過作圖、測量等實踐活動,給出合理的假設(shè)與猜測。整個環(huán)節(jié)通過設(shè)置的問題串,引導(dǎo)學(xué)生動手、動腦、動口相結(jié)合,激活學(xué)生的思維,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,合理的推測能力,嚴(yán)密的邏輯思維能力和靈活的動手實踐能力。
(三) 探索歸納,證明假設(shè):
勾股定理逆定理的證明與以往不同,需要構(gòu)造直角三角形才能完成,如何構(gòu)造直角三角形就成為解決問題的關(guān)鍵。如果直接將問題拋給學(xué)生證明,他們定會無從下手,所以為了解決這一問題,突破這個難點(diǎn),我先
1、 讓學(xué)生畫了一個三邊長度為3cm,4cm,5cm的三角形和一個以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個三角形上看出現(xiàn)了什么情況?并請學(xué)生簡單說明理由。通過操作驗證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,
2、 然后在黑板上畫一個三邊長為a、b、c,且滿足 a2+b2=c2的△ABC,與一個以a、b為直角邊的直角三角形,讓學(xué)生觀察它們之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。
在這個過程中,首先讓學(xué)生從特殊的實例中動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的判定,進(jìn)而由特殊到一般發(fā)現(xiàn)三邊長為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關(guān)系。
設(shè)計意圖:讓學(xué)生從特殊的實例動手到證明,進(jìn)而由特殊到一般,順利地利用構(gòu)建法證明了勾股定理的逆定理,整個過程自然、無神秘感,實現(xiàn)從直觀印象向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了“操作——觀察——猜測——探索——論證”的過程,體驗了“特殊到一般,個性到共性”的偉大數(shù)學(xué)思想在實際中的應(yīng)用。
這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
(四)學(xué)以致用、鞏固提升
本著由淺入深的原則,安排了三個題。第一題比較簡單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學(xué)生仿照課本上的例題,獨(dú)立完成,教師提醒書寫格式。并說明像15,8,17能夠成為直角三角形的三條邊長的正整數(shù),我們稱為勾股數(shù)。第二題我改變題的形式,把一些符合a+b=c的三角形放入網(wǎng)格中讓學(xué)生運(yùn)用勾股定理及其逆定理來說明理由。第三題是求一個不規(guī)則四邊形的面積,讓學(xué)生思考如何添加輔助線,把它分成一個直角三角形和一個非直角但能判定是直角的三角形,讓學(xué)生運(yùn)用勾股定理及其逆定理證明并求解。
設(shè)計意圖:采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)方法相結(jié)合的方法分層練習(xí),由淺入深地逐步提高學(xué)生解決實際問題的能力,達(dá)到鞏固知識,學(xué)以致用的目的
(五)回顧總結(jié),強(qiáng)化認(rèn)知
課堂小結(jié)以填空體的形式檢測、歸納總結(jié)
設(shè)計意圖:讓學(xué)生以填空題的形式進(jìn)行總結(jié),不僅能夠起到檢測的目的,而且?guī)椭鷮W(xué)生理清知識脈絡(luò),起到重點(diǎn)強(qiáng)調(diào),產(chǎn)生高度重視的效果。
(六)作業(yè)布置
教材33頁練習(xí)
設(shè)計意圖:加強(qiáng)學(xué)生對勾股定理逆定理的理解,使學(xué)生的練習(xí)范圍拓展到多個題型。
教學(xué)反思:本節(jié)課以學(xué)生為主體、教師為主導(dǎo),通過啟發(fā)與誘導(dǎo),使學(xué)生動手操作、動腦思考、動口表達(dá),讓學(xué)生在實踐與探究中發(fā)揮自我,充分調(diào)動了學(xué)生的自主性與積極性,整個過程注重了學(xué)生課上知識的形成與鞏固,以及學(xué)生各方面素質(zhì)的培養(yǎng)。總之本節(jié)課的知識目標(biāo)基本達(dá)成,能力目標(biāo)基本實現(xiàn),情感目標(biāo)基本落實。
以上是我對本節(jié)課的理解,還望各位老師指正。
勾股定理課件教案【篇2】
一、 說教材分析
1. 教材的地位和作用
華師大版八年級上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。
因此他的教育教學(xué)價值就具體體現(xiàn)在如下三維目標(biāo)中:
知識與技能:
1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。
2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實際問題。
過程與方法:
1、經(jīng)歷觀察—猜想—?dú)w納—驗證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。
2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學(xué)生的數(shù)學(xué)語言表達(dá)能力和初步的邏輯推理能力。
情感、態(tài)度與價值觀:
1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。
2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作意識和然所精神。
3、讓學(xué)生通過動手實踐,增強(qiáng)探究和創(chuàng)新意識,體驗研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學(xué)習(xí)方式。
由于八年級的學(xué)生具有一定分析能力,但活動經(jīng)驗不足,所以
本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過程,并掌握和運(yùn)用它。
教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。
二、說教法學(xué)法分析:
要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:
先從學(xué)生熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。
學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學(xué)生感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。
三、 說教學(xué)程序設(shè)計
1、 故事引入新課,激起學(xué)生學(xué)習(xí)興趣。
牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。
2、探索新知
在這里我設(shè)計了四個內(nèi)容:
①探索等腰直角三角形三邊的關(guān)系
②邊長為3、4、5為邊長的直角三角形的三邊關(guān)系
③學(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系
④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)
⑤勾股定理歷史介紹,讓學(xué)生體會勾股定理的文化價值。
體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。
3、新知運(yùn)用:
①舉出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)
②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.
③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?
④如圖,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.
4、小結(jié)本課:
學(xué)完了這節(jié)課,你有什么收獲?
老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。
反思:
教學(xué)設(shè)計主要是體現(xiàn)從特殊到一般的知識形成過程,探索問題的設(shè)計上有點(diǎn)難,第二個問題應(yīng)加個3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補(bǔ)全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設(shè)計進(jìn)去,就為后面的練習(xí)留足時間。探索時間較長,整個課程推行進(jìn)度較慢,練習(xí)較少。
對學(xué)生的啟發(fā)不夠,對學(xué)生的關(guān)注不夠,學(xué)生對問題的思考不能及時想出來,沒有及時很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因為問題設(shè)計的較難,沒有很好的體現(xiàn)出探究。
預(yù)期的目標(biāo)沒有很好的達(dá)成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點(diǎn)燃,思維能力,動手能力,探索精神沒有很好的得到發(fā)展。
勾股定理課件教案【篇3】
一、學(xué)生知識狀況分析
本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學(xué)生了解空間圖形、對一些空間圖形進(jìn)行展開、折疊等活動。學(xué)生在學(xué)習(xí)七年級上第一章時對生活中的立體圖形已經(jīng)有了一定的認(rèn)識,并從事過相應(yīng)的實踐活動,因而學(xué)生已經(jīng)具備解決本課問題所需的知識基礎(chǔ)和活動經(jīng)驗基礎(chǔ)。
二、教學(xué)任務(wù)分析
本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡單的實際問題。當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識;一些探究活動具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。
三、本節(jié)課的教學(xué)目標(biāo)是:
1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.
2.在將實際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點(diǎn)也是難點(diǎn).
四、教法學(xué)法
1.教學(xué)方法
引導(dǎo)—探究—?dú)w納
本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識教強(qiáng),思維活躍,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個方面對學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動出發(fā),順勢教學(xué)過程;
(3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件.
學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.
五、教學(xué)過程分析
本節(jié)課設(shè)計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).
1.3勾股定理的應(yīng)用:課后練習(xí)
一、問題引入:
1、勾股定理:直角三角形兩直角邊的________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。
2、勾股定理逆定理:如果三角形三邊長a,b,c滿足________,那么這個三角形是直角三角形
1.3勾股定理的應(yīng)用:同步檢測
1.為迎接新年的到來,同學(xué)們做了許多拉花布置教室,準(zhǔn)備召開新年晚會,小劉搬來一架高2.5米的木梯,準(zhǔn)備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應(yīng)為( )
A.0.7米B.0.8米C.0.9米D.1.0米
2.小華和小剛兄弟兩個同時從家去同一所學(xué)校上學(xué),速度都是每分鐘走50米.小華從家到學(xué)校走直線用了10分鐘,而小剛從家出發(fā)先去找小明再到學(xué)校(均走直線),小剛到小明家用了6分鐘,小明家到學(xué)校用了8分鐘,小剛上學(xué)走了個( )
A.銳角彎B.鈍角彎C.直角彎D.不能確定
3.如圖,是一個圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個小圓孔,則一條到達(dá)底部的直吸管在罐內(nèi)部分a的長度(罐壁的厚度和小圓孔的大小忽略不計)范圍是( )
A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
4.一個木工師傅測量了一個等腰三角形木板的腰、底邊和高的長,但他把這三個數(shù)據(jù)與其它的數(shù)據(jù)弄混了,請你幫助他找出來,是第( )組.
A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4
勾股定理課件教案【篇4】
各位考官,大家好,我是X號考生,今天我說課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。
教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。
一、說教材
“勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。
二、說學(xué)情
中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學(xué)生此前學(xué)習(xí)了三角形有關(guān)的知識,掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎(chǔ)上學(xué)習(xí)勾股定理的逆定理可以加深理解。
三、說教學(xué)目標(biāo)
根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實際我確定了如下教學(xué)目標(biāo)。
【知識與技能】
理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。
【過程與方法】
通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。
【情感態(tài)度與價值觀】
通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
四、說教學(xué)重難點(diǎn)
重點(diǎn):勾股定理逆定理的應(yīng)用;
難點(diǎn):探究勾股定理逆定理的證明過程。
五、說教學(xué)方法
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一?;诖?,我準(zhǔn)備采用的教法是講練結(jié)合法,小組討論法。
六、說教學(xué)過程
(一)導(dǎo)入新課
在導(dǎo)入新課環(huán)節(jié),我會采用溫故知新的導(dǎo)入方法,先讓學(xué)生回顧勾股定理有關(guān)知識,并引入本節(jié)課的課題——勾股定理逆定理。
【設(shè)計意圖】通過復(fù)習(xí)回顧能很好地將新舊知識聯(lián)系起來,使學(xué)生形成對知識的系統(tǒng)的認(rèn)識。并且由舊知開始,能很好地幫助學(xué)生克服畏難情緒。
(二)探究新知
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結(jié),然后便得到一個直角三角形這是為什么?這個問題一出現(xiàn),馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐不失時機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機(jī)讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí)可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點(diǎn),我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學(xué)生不是被動接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高,使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學(xué)生看書的習(xí)慣這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(三)鞏固提高
本著由淺入深的原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學(xué)生口答讓所有的學(xué)生都能完成。
第二題則進(jìn)了一層用字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識又可以提高靈活運(yùn)用以往知識的能力。
思維提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋調(diào)節(jié)教法同時注意加強(qiáng)有針對性的個別指導(dǎo)把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
(四)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會隨機(jī)詢問學(xué)生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應(yīng)用需要注意點(diǎn)什么等問題,先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法培養(yǎng)能力方面比如輔助線的添法。
設(shè)計意圖:這樣設(shè)計可以幫助學(xué)生以反思的形式回憶本節(jié)課所學(xué)的知識,加深對知識的印象,有利于學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣的養(yǎng)成。
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎(chǔ)題,我會用ppt出示關(guān)于勾股定理的逆定理的計算題目,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二組是開放性題目,讓學(xué)生課后思考總結(jié)一下判定一個三角形是直角三角形的方法。
勾股定理課件教案【篇5】
教學(xué)課題:
勾股定理的應(yīng)用
教學(xué)時間(日期、課時):
教材分析:
學(xué)情分析:
教學(xué)目標(biāo):
能運(yùn)用勾股定理及直角三角形的判定條件解決實際問題.
在運(yùn)用勾股定理解決實際問題的過程中,感受數(shù)學(xué)的“轉(zhuǎn)化” 思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會數(shù)學(xué)的應(yīng)用價值.
教學(xué)準(zhǔn)備
《數(shù)學(xué)學(xué)與練》
集體備課意見和主要參考資料
頁邊批注
教學(xué)過程
一.新課導(dǎo)入
本課時的教學(xué)內(nèi)容是勾股定理在實際中的應(yīng)用。除課本提供的情境外,教學(xué)中可以根據(jù)實際情況另行設(shè)計一些具體情境,也利用課本提供的素材組織數(shù)學(xué)活動。比如,把課本例2改編為開放式的問題情境:
一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m.如果梯子的頂端下滑0.5m,你認(rèn)為梯子的底端會發(fā)生什么變化?與同學(xué)交流.
創(chuàng)設(shè)學(xué)生身邊的問題情境,為每一個學(xué)生提供探索的空間,有利于發(fā)揮學(xué)生的主體性;這樣的問題學(xué)生常常會從自己的生活經(jīng)驗出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學(xué)中學(xué)生可能的結(jié)論有:
底端也滑動0.5m;如果梯子的頂端滑到地面上,梯子的頂端則滑動8m,估計梯子底端的滑動小于8m,所以梯子的頂端下滑0.5m,它的底端的滑動小于0.5m;構(gòu)造直角三角形,運(yùn)用勾股定理計算梯子滑動前、后底端到墻的垂直距離的差,得出梯子底端滑動約0.61m的結(jié)論等)。
通過與同學(xué)交流,完善各自的想法,有利于學(xué)生主動地把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,從中感受用數(shù)學(xué)的眼光審視客觀世界的樂趣.
二.新課講授
問題一在上面的情境中,如果梯子的頂端下滑1m,那么梯子的`底端滑動多少米?
組織學(xué)生嘗試用勾股定理解決問題,對有困難的學(xué)生教師給予及時的幫助和指導(dǎo).
問題二從上面所獲得的信息中,你對梯子下滑的變化過程有進(jìn)一步的思考嗎?與同學(xué)交流.
設(shè)計問題二促使學(xué)生能主動積極地從數(shù)學(xué)的角度思考實際問題.教學(xué)中學(xué)生可能會有多種思考.比如,
①這個變化過程中,梯子底端滑動的距離總比頂端下滑的距離大;
②因為梯子頂端下滑到地面時,頂端下滑了8m,而底端只滑動4m,所以這個變化過程中,梯子底端滑動的距離不一定比頂端下滑的距離大;
③由勾股數(shù)可知,當(dāng)梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時,底端到墻的垂直距離是8m,即底端電滑動2m等。
教學(xué)中不要把尋找規(guī)律作為這個探索活動的目標(biāo),應(yīng)讓學(xué)生進(jìn)行充分的交流,使學(xué)生逐步學(xué)會運(yùn)用數(shù)學(xué)的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經(jīng)驗和方法.
3.例題教學(xué)
課本的例1是勾股定理的簡單應(yīng)用,教學(xué)中可根據(jù)教學(xué)的實際情況補(bǔ)充一些實際應(yīng)用問題,把課本習(xí)題2.7第4題作為補(bǔ)充例題.通過這個問題的討論,把“32+b2=c2”看作一個方程,設(shè)折斷處離地面x尺,依據(jù)問題給出的條件就把它轉(zhuǎn)化為熟悉的會解的一元二次方程32+x2=(10—x)2,從中可以讓學(xué)生感受數(shù)學(xué)的“轉(zhuǎn)化”思想,進(jìn)一步了解勾股定理的悠久歷史和我國古代人民的聰明才智.
三.鞏固練習(xí)
1.甲、乙兩人同時從同一地點(diǎn)出發(fā),甲往東走了4km,乙往南走了6km,這時甲、乙兩人相距__________km.
2.如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程(取3)是().
(A)20cm(B)10cm(C)14cm(D)無法確定
3.如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求這塊草坪的面積.
四.小結(jié)
我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關(guān)系,已知直角三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊.從應(yīng)用勾股定理解決實際問題中,我們進(jìn)一步認(rèn)識到把直角三角形中三邊關(guān)系“a2+b2=c2”看成一個方程,只要依據(jù)問題的條件把它轉(zhuǎn)化為我們會解的方程,就把解實際問題轉(zhuǎn)化為解方程.
勾股定理課件教案【篇6】
一、 教材分析
(一)教材所處的地位
這節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(北師大)八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:
1、 能說出勾股定理的內(nèi)容。
2、 會初步運(yùn)用勾股定理進(jìn)行簡單的計算和實際運(yùn)用。
3、 在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
4、 通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。
(三)本課的教學(xué)重點(diǎn):探索勾股定理
本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計算。
二、教法與學(xué)法分析:
教法分析:針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—猜想結(jié)論—實驗操作—?dú)w納總結(jié)—問題解決—課堂小結(jié)—布置作業(yè)七部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
三、 教學(xué)過程設(shè)計:
(一)提出問題:
首先創(chuàng)設(shè)這樣一個問題情境:強(qiáng)大的臺風(fēng)使得一座高壓線塔在離地面9米處斷裂,塔頂落在離塔底部12米處,高壓線塔折斷之前有多高?
問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。學(xué)生會感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實際問題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識的基本觀點(diǎn),同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。
(二)猜想結(jié)論。
教師用計算機(jī)演示:
(1)在△ABC中,∠ACB=90°,∠A,∠B,∠C所對邊分別為a,b和c,使△ABC運(yùn)動起來,但始終保持∠ACB=90°,如拖動A點(diǎn)或B點(diǎn)改變a,b的長度來拖動AB邊繞任一點(diǎn)旋轉(zhuǎn)△ACB等。
(2)在以上過程中,始終測算 ,各取以上典型運(yùn)動的某一兩個狀態(tài)的測算值列成表格,讓學(xué)生觀察三個數(shù)之間有何數(shù)量關(guān)系,得出猜想。
(三)實驗操作:
1、投影課本圖1—2的有關(guān)直角三角形問題,讓學(xué)生計算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都予于肯定,并鼓勵學(xué)生用語言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。
2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,同樣讓學(xué)生計算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)極有幫助。
3、給出一個兩直角邊長分別為1.6,2.4這種含小數(shù)的直角三角形,對學(xué)生有一定的挑戰(zhàn)性。讓學(xué)生驗證是否也滿足這個結(jié)論,設(shè)計的目的是讓學(xué)生體會到結(jié)論更具有一般性。
(四)歸納總結(jié):
1、歸納
通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語言進(jìn)行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。
2、總結(jié)
勾股定理內(nèi)容得出后,引導(dǎo)學(xué)生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進(jìn)行愛國主義教育。
(五)問題解決:
讓學(xué)生解決開頭的實際問題,前后呼應(yīng),學(xué)生從中能體會到成功的喜悅。完成課本“想一想”進(jìn)一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學(xué)是與實際生活緊密相連的。
(六)課堂小結(jié):
主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。
(七)布置作業(yè):
課本P7習(xí)題1.1-- 2,4一方面鞏固勾股定理,另一方面進(jìn)一步體會定理與實際生活的聯(lián)系。另外,補(bǔ)充一道開放題。
四、 設(shè)計說明
1、本節(jié)課是公式課,根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—猜想結(jié)論—實驗操作—?dú)w納驗證—問題解決—課堂小結(jié)—布置作業(yè)七部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。
3、關(guān)于練習(xí)的設(shè)計,除實際問題和課本習(xí)題以外,我準(zhǔn)備設(shè)計一道開放題,大致思路是已知直角三角形的兩條邊,求出與這個三角形所有相關(guān)的結(jié)論。
4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識的意識是有很大的促進(jìn)的。
勾股定理課件教案【篇7】
一、教材分析
教材所處的地位與作用
“探索勾股定理”是人教版八年級《數(shù)學(xué)》下冊內(nèi)容?!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來,在幾何學(xué)中占有非常重要的位置。同時勾股定理在生產(chǎn)、生活中也有很大的用途。
二、教學(xué)目標(biāo)
綜上分析及教學(xué)大綱要求,本課時教學(xué)目標(biāo)制定如下:
1、知識目標(biāo)
知道勾股定理的由來,初步理解割補(bǔ)拼接的面積證法。
掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。
2、能力目標(biāo)
在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問題的能力。
3、情感目標(biāo)
通過觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識的發(fā)生、發(fā)展過程。
介紹“趙爽弦圖”,讓學(xué)生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛國情感。
三、教學(xué)重難點(diǎn)
本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級學(xué)生構(gòu)造能力較低以及對面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。
四、教學(xué)問題診斷
本節(jié)主要攻克的問題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對于學(xué)生來說,有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。
五、教法與學(xué)法分析
[教學(xué)方法與手段]針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。
[學(xué)法分析]在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實驗,自己獲取知識,并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動手、動口、動腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動感和責(zé)任感,這樣對掌握新知會事半功倍。
六、教學(xué)流程設(shè)計
1、創(chuàng)設(shè)情境,引入新課
本節(jié)課開始利用多媒體介紹了在北京召開的20xx年國際數(shù)學(xué)家大會的會標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,在課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學(xué)生思維的閘門,激勵探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動變?yōu)橹鲃?,在輕松愉悅的氛圍中學(xué)到知識。
2、觀察發(fā)現(xiàn),類比猜想
讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測:是否任意直角三角形都符合這個“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié)論。最后對此結(jié)論通過在網(wǎng)格中數(shù)格子進(jìn)行驗證,讓學(xué)生經(jīng)歷了“觀察——合理猜測——?dú)w納——驗證”的這一數(shù)學(xué)思想。在數(shù)格子的驗證過程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計算,其原則就是由不規(guī)則經(jīng)過割補(bǔ)變?yōu)橐?guī)則。
3、實驗探究,證明結(jié)論
因為勾股定理的出現(xiàn),使數(shù)學(xué)從單一的純計算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。
4、練兵之際
這是“總統(tǒng)證法”,此時讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。
5、自己動手,拼出弦圖
讓同學(xué)們拿出了提前準(zhǔn)備好的四個全等的邊長為a、b、c的直角三角形進(jìn)行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經(jīng)是把課堂全部還給了學(xué)生,讓他們在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。
6、總結(jié)反思
通過這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動。在活動中學(xué)生可以用自己創(chuàng)造與體驗的方法來學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過讓學(xué)生自主探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動腦、動手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實驗室”,學(xué)生通過自己活動得出結(jié)論,使創(chuàng)新精神與實踐能力得到了發(fā)展。
七、設(shè)計說明
1、根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實驗探究證明結(jié)論——自己動手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實驗由特殊到一般的數(shù)學(xué)思想對直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好的思維品質(zhì)的形成有重要作用,對學(xué)生終身發(fā)展也有很大作用。
勾股定理課件教案【篇8】
我按照“理解—掌握—運(yùn)用”的梯度設(shè)計了如下三組習(xí)題。
(1)對應(yīng)難點(diǎn),鞏固所學(xué);(2)考查重點(diǎn),深化新知;(3)解決問題,感受應(yīng)用
第五步 溫故反思 任務(wù)后延
在課堂接近尾聲時,我鼓勵學(xué)生從“四基”的要求對本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個定理、二個方案、三種思想、四種經(jīng)驗。
然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。
四、教學(xué)評價
在探究活動中,教師評價、學(xué)生自評與互評相結(jié)合,從而體現(xiàn)評價主體多元化和評價方式的多樣化。
五、設(shè)計說明
本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用 “七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
以上就是我對《勾股定理》這一課的設(shè)計說明,有不足之處請評委老師們指正,謝謝大家。
勾股定理課件教案【篇9】
學(xué)習(xí)目標(biāo)
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2.探索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)型結(jié)合的思想。
重點(diǎn)難點(diǎn)
或?qū)W習(xí)建議學(xué)習(xí)重點(diǎn):用面積的方法說明勾股定理的正確.
學(xué)習(xí)難點(diǎn):勾股定理的'應(yīng)用.
學(xué)習(xí)過程教師
二次備課欄
自學(xué)準(zhǔn)備與知識導(dǎo)學(xué):
這是1955年希臘為紀(jì)念一位數(shù)學(xué)家曾經(jīng)發(fā)行的郵票。
郵票上的圖案是根據(jù)一個著名的數(shù)學(xué)定理設(shè)計的。
學(xué)習(xí)交流與問題研討:
1、探索
問題:分別以圖中的直角三角形三邊為邊向三角形外
作正方形,小方格的面積看做1,求這三個正方形的面積?
S正方形BCED=S正方形ACFG=S正方形ABHI=
發(fā)現(xiàn):
2、實驗
在下面的方格紙上,任意畫幾個頂點(diǎn)都在格點(diǎn)上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。
請完成下表:
S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系
112
145
41620
91625
發(fā)現(xiàn):
如何用直角三角形的三邊長來表示這個結(jié)論?
這個結(jié)論就是我們今天要學(xué)習(xí)的勾股定理:
如圖:我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾
練習(xí)檢測與拓展延伸:
練習(xí)1、求下列直角三角形中未知邊的長
練習(xí)2、下列各圖中所示的線段的長度或正方形的面積為多少。
(注:下列各圖中的三角形均為直角三角形)
例1、如圖,在四邊形中,∠,∠,,求.
檢測:
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;
(2)b=8,c=17,則S△ABC=________。
2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10
3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()
A.12cmB.10cmC.8cmD.6cm
4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)
5、飛機(jī)在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機(jī)距離這個男孩5千米,飛機(jī)每小時飛行多少千米?
課后反思或經(jīng)驗總結(jié):
1、什么叫勾股定理;
2、什么樣的三角形的三邊滿足勾股定理;
3、用勾股定理解決一些實際問題。
勾股定理課件教案【篇10】
一、勾股定理是我國古數(shù)學(xué)的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實際生活的各個方面.教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實際生活中的廣泛應(yīng)用. 據(jù)此,制定教學(xué)目標(biāo)如下:
1.知識和方法目標(biāo):通過對一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計算,深入對勾股定理的理解. 2.過程與方法目標(biāo):通過對一些題目的探討,以達(dá)到掌握知識的目的.
3.情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美.
教學(xué)重點(diǎn):勾股定理的應(yīng)用. 教學(xué)難點(diǎn):勾股定理的正確使用.
教學(xué)關(guān)鍵:在現(xiàn)實情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.
二.說教法和學(xué)法
1.以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程.
2.切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力.
3.通過演示實物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望.
三、教學(xué)程序本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動手,動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 回顧問:勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個定理在實際生活中的應(yīng)用.
勾股定理課件教案【篇11】
尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學(xué)的宋寧。今天我說課的內(nèi)容是人教版《數(shù)學(xué)》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學(xué)法、教學(xué)過程、教學(xué)評價以及設(shè)計說明五個方面來闡述對本節(jié)課的理解與設(shè)計。
一、教材分析:
(一) 教材的地位與作用
從知識結(jié)構(gòu)上看百度一下,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應(yīng)用。
從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學(xué)生進(jìn)行愛國主義教育的良好素材,因此具備相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。
(二)重點(diǎn)與難點(diǎn)
為變被動接受為主動探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引領(lǐng)學(xué)生動手實驗突出重點(diǎn),合作交流突破難點(diǎn)。
二、教學(xué)與學(xué)法分析
教學(xué)方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問題,引領(lǐng)學(xué)生由淺入深的探索,設(shè)計實驗讓學(xué)生進(jìn)行驗證,感悟其中所蘊(yùn)涵的思想方法。
學(xué)法指導(dǎo) 為把學(xué)習(xí)的主動權(quán)還給學(xué)生,教師鼓勵學(xué)生采用動手實踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗知識的形成過程。
三、教學(xué)過程
我國數(shù)學(xué)文化源遠(yuǎn)流長、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計為以下五個環(huán)節(jié)。
首先,情境導(dǎo)入 古韻今風(fēng)
給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。(請看視頻)讓學(xué)生觀察并思考三個正方形面積之間的關(guān)系?它們圍成了什么三角形?反映在三邊上,又蘊(yùn)含著什么數(shù)學(xué)奧秘呢?寓教于樂,激發(fā)學(xué)生好奇、探究的欲望。
勾股定理課件教案【篇12】
(一)創(chuàng)設(shè)問題情境,引入新課:
在這一環(huán)節(jié)中,我設(shè)計了這樣一個情境,多媒體動畫展示,米老鼠來到了數(shù)學(xué)王國里的三角形城堡,要求只利用一根繩子,構(gòu)造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測大多數(shù)同學(xué)會無從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進(jìn)入城堡,我認(rèn)為:“大疑而大進(jìn)”這樣做,充分調(diào)動學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動漫演示,又有了很強(qiáng)的趣味性,做到課之初,趣已生,疑已質(zhì)。
(二)實踐猜想
本環(huán)節(jié)要圍繞以下幾個活動展開:
1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。
1a=3b=42a=5b=123a=2.5b=64a=6b=8
2、猜一猜,以下列線段長為三邊的三角形形狀
13cm4cm5cm25cm12cm13cm
32.5cm6cm6.5cm46cm8cm10cm
3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發(fā)現(xiàn)。
4、用恰當(dāng)?shù)恼Z言敘述你的結(jié)論
在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動手實踐,在問題1的基礎(chǔ)上做出合理的推測和猜想,這樣分層遞進(jìn)找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動的機(jī)會,最后運(yùn)用恰當(dāng)?shù)恼Z言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學(xué)生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導(dǎo)學(xué)生的實踐活動。學(xué)生的擺一擺的過程利用實物投影儀展示,在活動中教師關(guān)注;
1)學(xué)生的參與意識與動手能力。
2)是否清楚三角形三邊長度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。
3)數(shù)形結(jié)合的思想方法及歸納能力。
(三)推理證明
八年級正是學(xué)生由實驗幾何向推理幾何過渡的重要時期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問題的關(guān)鍵,直接拋給學(xué)生證明,無疑會石沉大海,所以,我采用分層導(dǎo)進(jìn)的方法,以求一石激起千層浪。
1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請簡要說明理由?
2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關(guān)系?試說明理由?
為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨(dú)立思考的時間,要給學(xué)生在組內(nèi)交流個別意見的時間,教師要深入小組指導(dǎo)與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問題的關(guān)鍵,讓他們在不斷的探究過程中,親自體驗參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點(diǎn)。
初中勾股定理教案設(shè)計(優(yōu)選八篇)
作為一位優(yōu)秀的人民教師,時常會需要準(zhǔn)備好教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編為大家整理的初中數(shù)學(xué)《勾股定理》教案模板,希望對大家有所幫助。
初中勾股定理教案設(shè)計 篇1
一、教案背景概述:
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運(yùn)用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學(xué)目標(biāo):
1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達(dá)能力等,感受勾股定理的文化價值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。
4、欣賞設(shè)計圖形美。
二、教案運(yùn)行描述:
教學(xué)準(zhǔn)備階段:
學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
三、教學(xué)流程:
(一)引入
同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
(二)實驗探究
1、取方格紙片,在上面先設(shè)計任意格點(diǎn)直角三角形,再以它們的每一邊分別向三角形外作正方形,如圖1
設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點(diǎn):以斜邊為邊的正方形的面積找法)
交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)
(三)探索所得結(jié)論的正確性
當(dāng)直角三角形的直角邊分別為a 、b,斜邊為c時, 是否一定成立?
1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來交流講解,并引導(dǎo)學(xué)生進(jìn)行說理:
如圖2(用補(bǔ)的方法說明)
師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹: (出示圖片) 中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個結(jié)論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)
20xx年,世界數(shù)學(xué)家大會在中國北京召開,當(dāng)時選用這個圖案作為會場主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構(gòu)造新圖形的方法去探索)
師介紹:(出示圖片)勾股定理是數(shù)學(xué)史上的一顆璀璨明珠,它的證明在數(shù)學(xué)史上屢創(chuàng)奇跡,從畢達(dá)哥拉斯到現(xiàn)在,吸引著世界上無數(shù)的數(shù)學(xué)家、物理學(xué)家、數(shù)學(xué)愛好者對它的探究,甚至政界要人——美國第20任總統(tǒng)加菲爾德,也加入到對它的探索證明中,如圖是他當(dāng)年設(shè)計的證明方法。據(jù)說至今已經(jīng)找到的證明方法有四百多種,且每年還會有所增加。(若有時間可以繼續(xù)出示學(xué)生中有價值的圖片進(jìn)行討論),有興趣的同學(xué)課后可以繼續(xù)探索……
四、總結(jié):
本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:
五、作業(yè):
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運(yùn)用。
初中勾股定理教案設(shè)計 篇2
教學(xué) 目標(biāo):
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。
教學(xué) 重點(diǎn):
分式通分的理解和掌握。
教學(xué) 難點(diǎn):
分式通分中最簡公分母的確定。
教學(xué) 工具:
投影儀
教學(xué) 方法:
啟發(fā)式、討論式
教學(xué) 過程 :
(一)引入
(1)如何計算:
由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分?jǐn)?shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的 通分 .
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的`依據(jù):分式的基本性質(zhì).
3.通分的關(guān)鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做 最簡公分母 .
根據(jù)分式通分和最簡公分母的定義,將分式xx ,xx,xx 通分:
最簡公分母為:xx ,然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼?,使各分式的分母都化為xx。通分如下:
通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。
例1 通分:
(1)
分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。
解:∵ 最簡公分母是12xy 2
小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
解:∵最簡公分母是10a 2 b 2 c 2
由學(xué)生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:
(1)取各分母系數(shù)的最小公倍數(shù);
(2)凡出現(xiàn)的字母為底的冪的因式都要??;
(3)相同字母的冪的因式取指數(shù)最大的。
取這些因式的積就是最簡公分母。
初中勾股定理教案設(shè)計 篇3
教學(xué)目標(biāo)
了解勾股定理的一些證明方法,會簡單應(yīng)用勾股定理解決問題
過程與方法:
在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
情感態(tài)度價值觀:
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
教學(xué)過程
1、創(chuàng)設(shè)情境
問題1:國際數(shù)學(xué)家大會是最高水平的全球性數(shù)學(xué)學(xué)科學(xué)術(shù)會議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會”。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學(xué)習(xí)過的基本圖形組成?這個圖案有什么特別的含義?
師生活動:教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會徽圖案的含義。
設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會的會徽說起,設(shè)置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界
問題2:相傳2500多年前,畢達(dá)哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應(yīng)了直角三角形三邊的某種數(shù)量關(guān)系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?
師生活動:學(xué)生先獨(dú)立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍(lán)色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學(xué)生的討論
追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?
師生活動:教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論
問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
師生活動:學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補(bǔ)兩種方法,求出其面積。
初中勾股定理教案設(shè)計 篇4
【學(xué)習(xí)目標(biāo)】
能運(yùn)用勾股定理及直角三角形的判別條件解決簡單的實際問題.
【學(xué)習(xí)重點(diǎn)】
勾股定理及直角三角形的判別條件的運(yùn)用.
【學(xué)習(xí)重點(diǎn)】
直角三角形模型的建立.
【學(xué)習(xí)過程】
一.課前復(fù)習(xí)
勾股定理及勾股定理逆定理的區(qū)別
二.新課學(xué)習(xí)
探究點(diǎn)一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題
有一個圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對的B點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路程是多少?
思考:
1.利用學(xué)具,嘗試從A點(diǎn)到B點(diǎn)沿圓柱側(cè)面畫出幾條線路,你認(rèn)為這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側(cè)面剪開展開成一個長方形,B點(diǎn)在什么位置?從A點(diǎn)到B點(diǎn)的最短路線是什么?你是如何畫的?
3.螞蟻從A點(diǎn)出發(fā),想吃到B點(diǎn)上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。
4.你是如何將這個實際問題轉(zhuǎn)化為數(shù)學(xué)問題的?
小結(jié):
你是如何解決圓柱體側(cè)面上兩點(diǎn)之間的最短距離問題的?
探究點(diǎn)二:利用勾股定理逆定理如何判斷兩線垂直?
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務(wù)嗎?
(2)李叔叔量得AD的長是30cm,AB的長是40cm,BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個問題的?
(3)小明隨身只有一個長度為20cm的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
小結(jié):通過本道例題的探索,判斷兩線垂直,你學(xué)會了什么方法?
三.課堂小結(jié):本節(jié)課你學(xué)到了什么?
【反思】
一、教師我的體會:
①、我根據(jù)學(xué)生實際情況認(rèn)真?zhèn)湔n這節(jié)課,書本總共兩個例題,且兩個例題都很難,如果一節(jié)課就講這兩題難題,那一方面學(xué)生的學(xué)習(xí)效率會比較低,另一方面會使學(xué)生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學(xué)生易于學(xué)習(xí),有利于學(xué)生學(xué)習(xí)新知識、接受新知識,降低學(xué)習(xí)難度。
②、除了備教材外,還備學(xué)生。從教案及授課過程也可以看出,充分考慮到了學(xué)生的年齡特點(diǎn):對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學(xué)難度較大,為了改變這一狀況,在處理教材時,把某些數(shù)學(xué)語言轉(zhuǎn)換成通俗文字來表達(dá),把難度大的運(yùn)用能力降低為難度稍細(xì)的理解能力,讓學(xué)生樂于面對奧妙而又有一定深度的數(shù)學(xué),樂于學(xué)習(xí)數(shù)學(xué)。
③、新課選用的例子、練習(xí),都是經(jīng)過精心挑選的,運(yùn)用性強(qiáng),貼近生活,與生活實際緊密聯(lián)系,既達(dá)到學(xué)習(xí)、鞏固新知識的目的,同時,又充分展現(xiàn)出數(shù)學(xué)教學(xué)的重大特征:數(shù)學(xué)源于生活實際,又服務(wù)于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務(wù)。
④、使用多媒體進(jìn)行教學(xué),使知識顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。
二、學(xué)生體會:
課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應(yīng)用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應(yīng)用時,我覺得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機(jī)智地進(jìn)行計算和一些推理。另外與同學(xué)間在數(shù)學(xué)課上有自主學(xué)習(xí)的機(jī)會,有相互之間的討論、爭辯等協(xié)作的機(jī)會,在合作學(xué)習(xí)的過程中共同提高我覺得都是難得的機(jī)會。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺得圖形很美,古代的數(shù)學(xué)家已經(jīng)有了很好的研究并作出了很大的貢獻(xiàn),現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時在課堂中漸漸地培養(yǎng)了我們的數(shù)學(xué)興趣和一定的思維能力。
不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發(fā)展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學(xué)習(xí)的主人。數(shù)學(xué)課堂里充滿了智慧。
初中勾股定理教案設(shè)計 篇5
[教學(xué)分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認(rèn)識。
[教學(xué)目標(biāo)]
一、 知識與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡單的實際問題
3、學(xué)會簡單的合情推理與數(shù)學(xué)說理
二、 過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的`思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識。
三、 情感與態(tài)度目標(biāo)
通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進(jìn)行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。
四、 重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2、熟練運(yùn)用勾股定理
[教學(xué)過程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>
2、教師展示圖片并介紹第二情景
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。
例題:小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機(jī)會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
初中勾股定理教案設(shè)計 篇6
教學(xué)目標(biāo)
1、知識與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
2、過程與方法目標(biāo):經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。
3、情感態(tài)度與價值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動探究的習(xí)慣,并進(jìn)一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。
教學(xué)重點(diǎn)
了解勾股定理的由來,并能用它來解決一些簡單的問題。
教學(xué)難點(diǎn)
勾股定理的探究以及推導(dǎo)過程。
教學(xué)過程
一、創(chuàng)設(shè)問題情景、導(dǎo)入新課
首先出示:投影1(章前的圖文)并介紹我國古代在勾股定理研究方面的貢獻(xiàn),結(jié)合課本第六頁談一談我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示課件觀察后回答:
1、觀察圖1—2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即B的面積為______個單位。
正方形C中有_______個小方格,即C的面積為______個單位。
2、你是怎樣得出上面的結(jié)果的?
3、在學(xué)生交流回答的基礎(chǔ)上教師進(jìn)一步設(shè)問:圖1—2中,A,B,C面積之間有什么關(guān)系?學(xué)生交流后得到結(jié)論:A+B=C。
二、層層深入、探究新知
1、做一做
出示投影3(書中P3圖1—3)
提問:(1)圖1—3中,A,B,C之間有什么關(guān)系?(2)從圖1—2,1—3中你發(fā)現(xiàn)什么?
學(xué)生討論、交流后,得出結(jié)論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。
2、議一議
圖1—2、1—3中,你能用三角形的邊長表示正方形的面積嗎?
(1)你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?在同學(xué)交流的基礎(chǔ)上,共同探討得出:直角三角形兩直角邊的平方和等于斜邊的平方。這就是著名的“勾股定理”。也就是說如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
(2)分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?
3、想一想
我們常見的電視的尺寸:29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?還是指的是屏幕的寬?那他指什么呢?能否運(yùn)用剛才所學(xué)的知識,檢驗一下電視劇的尺寸是否合格?
三、鞏固練習(xí)。
1、在圖1—1的問題中,折斷之前旗桿有多高?
2、錯例辨析:△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足
=25即:c=5辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題三角形ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并未交待C是斜邊。
綜上所述這個題目條件不足,第三邊無法求得
四、課堂小結(jié)
鼓勵學(xué)生自己總結(jié)、談?wù)勛约罕竟?jié)課的收獲,以及自己對勾股定理的理解,老師加以糾正和補(bǔ)充。
五、布置作業(yè)
初中勾股定理教案設(shè)計 篇7
教學(xué)目標(biāo)
知識與技能:
了解勾股定理的一些證明方法,會簡單應(yīng)用勾股定理解決問題
過程與方法:
在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
情感態(tài)度價值觀:
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
教學(xué)過程
1、創(chuàng)設(shè)情境
問題1國際數(shù)學(xué)家大會是最高水平的全球性數(shù)學(xué)學(xué)科學(xué)術(shù)會議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會”。2002年在北京召開了第24屆國際數(shù)學(xué)家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學(xué)習(xí)過的基本圖形組成?這個圖案有什么特別的含義?
師生活動:教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會徽圖案的含義。
設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會的會徽說起,設(shè)置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界
問題2相傳2500多年前,畢達(dá)哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應(yīng)了直角三角形三邊的某種數(shù)量關(guān)系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?
師生活動:學(xué)生先獨(dú)立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍(lán)色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學(xué)生的討論
追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?
師生活動:教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論
問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
師生活動:學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補(bǔ)兩種方法,求出其面積。
初中勾股定理教案設(shè)計 篇8
教學(xué)目標(biāo)
1、知識與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
2、過程與方法目標(biāo):經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。
3、情感態(tài)度與價值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動探究的習(xí)慣,并進(jìn)一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。
教學(xué)重點(diǎn)
了解勾股定理的由來,并能用它來解決一些簡單的問題。
教學(xué)難點(diǎn)
勾股定理的探究以及推導(dǎo)過程。
教學(xué)過程
一、創(chuàng)設(shè)問題情景、導(dǎo)入新課
首先出示:投影1(章前的圖文)并介紹我國古代在勾股定理研究方面的貢獻(xiàn),結(jié)合課本第六頁談一談我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示課件觀察后回答:
1、觀察圖1—2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即B的面積為______個單位。
正方形C中有_______個小方格,即C的面積為______個單位。
2、你是怎樣得出上面的結(jié)果的?
3、在學(xué)生交流回答的基礎(chǔ)上教師進(jìn)一步設(shè)問:圖1—2中,A,B,C面積之間有什么關(guān)系?學(xué)生交流后得到結(jié)論:A+B=C。
二、層層深入、探究新知
1、做一做
出示投影3(書中P3圖1—3)
提問:
(1)圖1—3中,A,B,C之間有什么關(guān)系?
(2)從圖1—2,1—3中你發(fā)現(xiàn)什么?
學(xué)生討論、交流后,得出結(jié)論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。
2、議一議
圖1—2、1—3中,你能用三角形的邊長表示正方形的面積嗎?
(1)你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?在同學(xué)交流的基礎(chǔ)上,共同探討得出:直角三角形兩直角邊的平方和等于斜邊的平方。這就是著名的“勾股定理”。也就是說如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
(2)分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?
3、想一想
我們常見的電視的尺寸:29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?還是指的是屏幕的寬?那他指什么呢?能否運(yùn)用剛才所學(xué)的知識,檢驗一下電視劇的尺寸是否合格?
三、鞏固練習(xí)。
1、在圖1—1的問題中,折斷之前旗桿有多高?
2、錯例辨析:三角形的兩邊為3和4,求第三邊
四、課堂小結(jié)
鼓勵學(xué)生自己總結(jié)、談?wù)勛约罕竟?jié)課的收獲,以及自己對勾股定理的理解,老師加以糾正和補(bǔ)充。
2025勾股定理教案模板十一篇
本篇優(yōu)秀的“勾股定理教案”文章是幼兒教師教育網(wǎng)編輯認(rèn)真挑選的結(jié)果,如果您想要隨時查看本文請記得收藏。根據(jù)教學(xué)要求老師在上課前需要準(zhǔn)備好教案課件,教案課件里的內(nèi)容是老師自己去完善的。?學(xué)生課堂反應(yīng)的不同可以幫助教師制定不同的教學(xué)策略。
勾股定理教案(篇1)
(一)本節(jié)內(nèi)容在全書和章節(jié)的地位
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。
(二)三維教學(xué)目標(biāo):
1.【知識與能力目標(biāo)】
⒈理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運(yùn)用勾股定理及其計算;
⒉通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
2.【過程與方法目標(biāo)】
在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
3.【情感態(tài)度與價值觀】通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。
勾股定理教案(篇2)
1.知識與技能目標(biāo):會用勾股定理及直角三角形的判定條件解決實際問題,逐步培養(yǎng)“數(shù)形結(jié)合”和“轉(zhuǎn)化”數(shù)學(xué)能力。
2.過程與方法目標(biāo):發(fā)展學(xué)生的分析問題能力和表達(dá)能力。經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3.情感態(tài)度與價值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育
在本章中,我們探索了直角三角形的三邊關(guān)系,并在此基礎(chǔ)上得到了勾股定理,并學(xué)習(xí)了如何利用拼圖驗證勾股定理,介紹了勾股定理的用途;本章后半部分學(xué)習(xí)了勾股定理的逆定是以及它的應(yīng)用.其知識結(jié)構(gòu)如下:
1.勾股定理:
直角三角形兩直角邊的______和等于_______的平方.就是說,對于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有:————————————.這就是勾股定理.
勾股定理揭示了直角三角形___之間的數(shù)量關(guān)系,是解決有關(guān)線段計算問題的重要依據(jù).
勾股定理的直接作用是知道直角三角形任意兩邊的長度,求第三邊的長.這里一定要注意找準(zhǔn)斜邊、直角邊;二要熟悉公式的變形:
“若三角形的兩條邊的平方和等于第三邊的平方,則這個三角形為________.”這一命題是勾股定理的逆定理.它可以幫助我們判斷三角形的形狀.為根據(jù)邊的關(guān)系解決角的有關(guān)問題提供了新的方法.定理的證明采用了構(gòu)造法.利用已知三角形的邊a,b,c(a2+b2=c2),先構(gòu)造一個直角邊為a,b的直角三角形,由勾股定理證明第三邊為c,進(jìn)而通過“SSS”證明兩個三角形全等,證明定理成立.
3.勾股定理的作用:
已知直角三角形的兩邊,求第三邊;
勾股定理的逆定理是用來判定一個三角形是否是直角三角形的,但在判定一個三角形是否是直角三角形時應(yīng)首先確定該三角形的邊,當(dāng)其余兩邊的平方和等于邊的平方時,該三角形才是直角三角形.勾股定理的逆定理也可用來證明兩直線是否垂直,這一點(diǎn)同學(xué)
勾股定理是直角三角形的性質(zhì)定理,而勾股定理的逆定理是直角三角形的判定定理,它不僅可以判定三角形是否為直角三角形,還可以判定哪一個角是直角,從而產(chǎn)生了證明兩直線互相垂直的新方法:利用勾股定理的逆定理,通過計算來證明,體現(xiàn)了數(shù)形結(jié)合的思想.
三角形的三邊分別為a、b、c,其中c為邊,若,則三角形是直角三角形;若,則三角形是銳角三角形;若,則三角形是鈍角三角形.所以使用勾股定理的逆定理時首先要確定三角形的邊.
求:(1) 陰影部分是正方形; (2) 陰影部分是長方形; (3) 陰影部分是半圓.
2. 如圖,以Rt△ABC的三邊為直徑分別向外作三個半圓,試探索三個半圓的面積之間的關(guān)系.
例(山東濱州)如圖2,已知△ABC中,AB=17,AC=10,BC邊上的高,AD=8,則邊BC的長為( )
【強(qiáng)化訓(xùn)練】:1.在直角三角形中,若兩直角邊的長分別為5cm,7cm ,則斜邊長為 .
2.(易錯題、注意分類的思想)已知直角三角形的兩邊長為4、5,則另一條邊長的平方是
3、已知直角三角形兩直角邊長分別為5和12, 求斜邊上的高.(結(jié)論:直角三角形的兩條直角邊的積等于斜邊與其高的積,ab=ch)
例、(09年湖南長沙)如圖1所示,等腰中,,
是底邊上的高,若,求 ①AD的長;②ΔABC的面積.
例、(09年濱州)某樓梯的側(cè)面視圖如圖3所示,其中米,,
,因某種活動要求鋪設(shè)紅色地毯,則在AB段樓梯所鋪地毯的長度應(yīng)為 .
分析:如何利用所學(xué)知識,把折線問題轉(zhuǎn)化成直線問題,是問題解決的關(guān)鍵。仔細(xì)觀察圖形,不難發(fā)現(xiàn),所有臺階的高度之和恰好是直角三角形ABC的直角邊BC的長度,所有臺階的寬度之和恰好是直角三角形ABC的直角邊AC的長度,只需利用勾股定理,求得這兩條線段的長即可。
1、小強(qiáng)想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿頂端的繩子垂到地面還多2米,當(dāng)他把繩子的下端拉開4米后,發(fā)現(xiàn)下端剛好接觸地面,你能幫他算出來嗎?
【強(qiáng)化訓(xùn)練】:折疊矩形ABCD的一邊AD,點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=4cm,BC=5cm,求CF 和EC。.
例、如右圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中的正方形的邊長為5,則正方形A,B,C,D的面積的和為
一個是正方形的邊長與面積的關(guān)系,另一個是正方形的面積與直角三角形直角邊與斜邊的關(guān)系。
例1:分別以下列四組數(shù)為一個三角形的邊長:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能夠成直角三角形的有
【強(qiáng)化訓(xùn)練】:已知△ABC中,三條邊長分別為a=n-1, b=2n, c=n+1(n>1).試判斷該三角形是否是直角三角形,若是,請指出哪一條邊所對的角是直角.
例:如圖是一塊地,已知AD=4m,CD=3m,∠D=90°,AB=13m,BC=12m,求這塊地的面積。
例、如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.
【強(qiáng)化訓(xùn)練】:如圖一個圓柱,底圓周長6cm,高4cm,一只螞蟻沿外壁爬行,要從A點(diǎn)爬到B點(diǎn),則最少要爬行 cm
1.設(shè)直角三角形的三條邊長為連續(xù)自然數(shù),則這個直角三角形的面積是_____.
2.直角三角形的兩直角邊分別為5cm,12cm,其中斜邊上的高為( ).
3.如圖,△ABC的三邊分別為AC=5,BC=12,AB=13,將△ABC沿AD折疊,使AC落在AB上,求DC的長.
4.如圖,一只鴨子要從邊長分別為16m和6m的長方形水池一角M游到水池另一邊中點(diǎn)N,那么這只鴨子游的最短路程應(yīng)為多少米?
5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所爬行的最短路線的長是
8.(海南省中考題)如圖,鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站建在距A站多少千米處?
5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所爬行的最短路線的長是
則該地毯的長度至少是 米。
勾股定理教案(篇3)
勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
(二)教學(xué)目標(biāo) 知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實際問題。 過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。 情感態(tài)度與價值觀: 激發(fā)愛國熱情,體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。
(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
二、教法與學(xué)法分析:
學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng).
教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。
1、創(chuàng)設(shè)情境,提出問題 2、實驗操作,模型構(gòu)建 3、回歸生活,應(yīng)用新知 4、知識拓展,鞏固深化5、感悟收獲,布置作業(yè)
(1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票 大會會標(biāo)
設(shè)計意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值。
(2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進(jìn)入三樓滅火?
設(shè)計意圖:以實際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系? 設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)
設(shè)計意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。
通過以上實驗歸納總結(jié)勾股定理。
設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊—— 一般的認(rèn)知規(guī)律。
讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。
基礎(chǔ)題,情境題,探索題。
設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展。知識的運(yùn)用得到升華。
基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題?你能解決所提出的問題嗎?
設(shè)計意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?
設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。
探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。
設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。
2、搜集有關(guān)勾股定理證明的資料。
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2
設(shè)計說明:1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法.
2、讓學(xué)生人人參與,注重對學(xué)生活動的評價,一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平。
勾股定理教案(篇4)
各位考官,大家好,我是X號考生,今天我說課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。
教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。
一、說教材
“勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。
二、說學(xué)情
中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學(xué)生此前學(xué)習(xí)了三角形有關(guān)的知識,掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎(chǔ)上學(xué)習(xí)勾股定理的逆定理可以加深理解。
三、說教學(xué)目標(biāo)
根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實際我確定了如下教學(xué)目標(biāo)。
【知識與技能】
理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。
【過程與方法】
通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。
【情感態(tài)度與價值觀】
通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
四、說教學(xué)重難點(diǎn)
重點(diǎn):勾股定理逆定理的應(yīng)用;
難點(diǎn):探究勾股定理逆定理的證明過程。
五、說教學(xué)方法
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一。基于此,我準(zhǔn)備采用的教法是講練結(jié)合法,小組討論法。
六、說教學(xué)過程
(一)導(dǎo)入新課
在導(dǎo)入新課環(huán)節(jié),我會采用溫故知新的導(dǎo)入方法,先讓學(xué)生回顧勾股定理有關(guān)知識,并引入本節(jié)課的課題——勾股定理逆定理。
【設(shè)計意圖】通過復(fù)習(xí)回顧能很好地將新舊知識聯(lián)系起來,使學(xué)生形成對知識的系統(tǒng)的認(rèn)識。并且由舊知開始,能很好地幫助學(xué)生克服畏難情緒。
(二)探究新知
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結(jié),然后便得到一個直角三角形這是為什么?這個問題一出現(xiàn),馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐不失時機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機(jī)讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí)可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點(diǎn),我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學(xué)生不是被動接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高,使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學(xué)生看書的習(xí)慣這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(三)鞏固提高
本著由淺入深的原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學(xué)生口答讓所有的學(xué)生都能完成。
第二題則進(jìn)了一層用字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識又可以提高靈活運(yùn)用以往知識的能力。
思維提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋調(diào)節(jié)教法同時注意加強(qiáng)有針對性的個別指導(dǎo)把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
(四)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會隨機(jī)詢問學(xué)生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應(yīng)用需要注意點(diǎn)什么等問題,先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法培養(yǎng)能力方面比如輔助線的添法。
設(shè)計意圖:這樣設(shè)計可以幫助學(xué)生以反思的形式回憶本節(jié)課所學(xué)的知識,加深對知識的印象,有利于學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣的養(yǎng)成。
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎(chǔ)題,我會用ppt出示關(guān)于勾股定理的逆定理的計算題目,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二組是開放性題目,讓學(xué)生課后思考總結(jié)一下判定一個三角形是直角三角形的方法。
勾股定理教案(篇5)
尊敬的各位領(lǐng)導(dǎo)、各位老師,大家好:
我叫李朝紅,是第十四中學(xué)的一名教師。我今天說課的題目《勾股定理的逆定理》,選自人教課標(biāo)實驗版教科書數(shù)學(xué)八年級下冊第十八章第二節(jié),本節(jié)課共分兩個課時,我今天分析的是第一個課時,下面我將從教材、教法學(xué)法、教學(xué)過程、教學(xué)反思四個方面進(jìn)行闡述。
一、教材分析
1、教材的地位和作用:
在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)學(xué)習(xí)了勾股定理,全等三角形的判定等相關(guān)知識,為本節(jié)課的學(xué)習(xí)打好了基礎(chǔ),學(xué)習(xí)好本節(jié)課不但可以鞏固學(xué)生已有的知識,而且為后面利用勾股定理的逆定理判斷一個三角形是否直角三角形等相關(guān)知識的學(xué)習(xí)做好了鋪墊。
2、教學(xué)目標(biāo)
教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實是實施課堂教學(xué)的關(guān)鍵??紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實際情況,我制定了如下教學(xué)目標(biāo)
知識與技能:掌握勾股定理的逆定理,會用勾股定理的逆定理判斷一個三角形是否直角三角形。
過程與方法:通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成
過程,體會數(shù)形結(jié)合和由特殊到一般的數(shù)學(xué)思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
情感、態(tài)度、價值觀:在探究勾股定理的逆定理的活動中,滲透與他人交流、合作的意識和探究精神.
3、重點(diǎn)難點(diǎn)
本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)
重點(diǎn):理解并掌握勾股定理的逆定理,并會應(yīng)用。
難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。
二、教法學(xué)法分析
八年級學(xué)生的特點(diǎn)是思維比較活躍,喜歡發(fā)表自己的見解,善于進(jìn)行小組合作學(xué)習(xí),所以我將采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)相結(jié)合的方法,老師為主導(dǎo),學(xué)生為主體,充分調(diào)動學(xué)生的學(xué)習(xí)積極性,讓學(xué)生動手操作,動腦思考,動口表達(dá),積極參與到本節(jié)課的教學(xué)過程中來,在鍛煉學(xué)生思考、觀察、實踐能力的同時,使其科學(xué)文化修養(yǎng)與思想道德修養(yǎng)進(jìn)一步提升。
教法學(xué)法分析完畢,我再來分析一下教學(xué)過程,這是我本次說課的重點(diǎn)。
三、教學(xué)過程分析:
(一)創(chuàng)設(shè)情景,引入新課
1、展示圖片:古埃及人制作直角的方法
2、讓學(xué)生試一試用一根繩子確定直角
設(shè)計意圖:通過古埃及人制作直角的方法,提出讓學(xué)生動手操作,進(jìn)而使學(xué)生產(chǎn)生好奇心:“這樣就能確定直角嗎”,激發(fā)學(xué)生的求知欲,點(diǎn)燃其學(xué)習(xí)的激情,充分調(diào)動學(xué)生的學(xué)習(xí)積極性 ,同時也使學(xué)生感受到幾何來源于生活,服務(wù)于生活的道理,體會數(shù)學(xué)的價值。
(二)動手檢測,提出假設(shè)
在本環(huán)節(jié)中通過情境中的問題,引導(dǎo)學(xué)生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm
上面三組線段為邊畫出三角形,猜測驗證出其形狀。
再引導(dǎo)啟發(fā)誘導(dǎo)學(xué)生從上面的活動中歸納思考:如果一個三角形的三邊a,b,c滿足a2+b2=c2,那這個三角形是直角三角形嗎?在整個過程的活動中,盡量給學(xué)生足夠的時間和空間,以平等身份參與到學(xué)生活動中來,對其實踐活動予以指導(dǎo)。讓學(xué)生通過作圖、測量等實踐活動,給出合理的假設(shè)與猜測。整個環(huán)節(jié)通過設(shè)置的問題串,引導(dǎo)學(xué)生動手、動腦、動口相結(jié)合,激活學(xué)生的思維,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,合理的推測能力,嚴(yán)密的邏輯思維能力和靈活的動手實踐能力。
(三) 探索歸納,證明假設(shè):
勾股定理逆定理的證明與以往不同,需要構(gòu)造直角三角形才能完成,如何構(gòu)造直角三角形就成為解決問題的關(guān)鍵。如果直接將問題拋給學(xué)生證明,他們定會無從下手,所以為了解決這一問題,突破這個難點(diǎn),我先
1、 讓學(xué)生畫了一個三邊長度為3cm,4cm,5cm的三角形和一個以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個三角形上看出現(xiàn)了什么情況?并請學(xué)生簡單說明理由。通過操作驗證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,
2、 然后在黑板上畫一個三邊長為a、b、c,且滿足 a2+b2=c2的△ABC,與一個以a、b為直角邊的直角三角形,讓學(xué)生觀察它們之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。
在這個過程中,首先讓學(xué)生從特殊的實例中動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的判定,進(jìn)而由特殊到一般發(fā)現(xiàn)三邊長為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關(guān)系。
設(shè)計意圖:讓學(xué)生從特殊的實例動手到證明,進(jìn)而由特殊到一般,順利地利用構(gòu)建法證明了勾股定理的逆定理,整個過程自然、無神秘感,實現(xiàn)從直觀印象向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了“操作——觀察——猜測——探索——論證”的過程,體驗了“特殊到一般,個性到共性”的偉大數(shù)學(xué)思想在實際中的應(yīng)用。
這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
(四)學(xué)以致用、鞏固提升
本著由淺入深的原則,安排了三個題。第一題比較簡單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學(xué)生仿照課本上的例題,獨(dú)立完成,教師提醒書寫格式。并說明像15,8,17能夠成為直角三角形的三條邊長的正整數(shù),我們稱為勾股數(shù)。第二題我改變題的形式,把一些符合a+b=c的三角形放入網(wǎng)格中讓學(xué)生運(yùn)用勾股定理及其逆定理來說明理由。第三題是求一個不規(guī)則四邊形的面積,讓學(xué)生思考如何添加輔助線,把它分成一個直角三角形和一個非直角但能判定是直角的三角形,讓學(xué)生運(yùn)用勾股定理及其逆定理證明并求解。
設(shè)計意圖:采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)方法相結(jié)合的方法分層練習(xí),由淺入深地逐步提高學(xué)生解決實際問題的能力,達(dá)到鞏固知識,學(xué)以致用的目的
(五)回顧總結(jié),強(qiáng)化認(rèn)知
課堂小結(jié)以填空體的形式檢測、歸納總結(jié)
設(shè)計意圖:讓學(xué)生以填空題的形式進(jìn)行總結(jié),不僅能夠起到檢測的目的,而且?guī)椭鷮W(xué)生理清知識脈絡(luò),起到重點(diǎn)強(qiáng)調(diào),產(chǎn)生高度重視的效果。
(六)作業(yè)布置
教材33頁練習(xí)
設(shè)計意圖:加強(qiáng)學(xué)生對勾股定理逆定理的理解,使學(xué)生的練習(xí)范圍拓展到多個題型。
教學(xué)反思:本節(jié)課以學(xué)生為主體、教師為主導(dǎo),通過啟發(fā)與誘導(dǎo),使學(xué)生動手操作、動腦思考、動口表達(dá),讓學(xué)生在實踐與探究中發(fā)揮自我,充分調(diào)動了學(xué)生的自主性與積極性,整個過程注重了學(xué)生課上知識的形成與鞏固,以及學(xué)生各方面素質(zhì)的培養(yǎng)。總之本節(jié)課的知識目標(biāo)基本達(dá)成,能力目標(biāo)基本實現(xiàn),情感目標(biāo)基本落實。
以上是我對本節(jié)課的理解,還望各位老師指正。
勾股定理教案(篇6)
本節(jié)課為人教版八年級數(shù)學(xué)下冊第十八章第一節(jié),教材64頁至66頁(不含探究1)的內(nèi)容。其內(nèi)容包括章前對勾股定理整章的引入:2002年北京召開的國際數(shù)學(xué)家大會的會徽及“趙爽弦圖”的簡介,反映了我國古代對勾股定理的研究成果,是對學(xué)生進(jìn)行愛國主義教育的良好素材。教材正文中從畢達(dá)哥拉斯發(fā)現(xiàn)等腰直角三角形的邊之間的數(shù)量關(guān)系這一事實引入對勾股定理的探究,用面積法得到勾股定理的結(jié)論,而后教材又重點(diǎn)從“趙爽弦圖”的方法對勾股定理進(jìn)行了詳細(xì)的論證;課后習(xí)題18.1的第1、2、7、11、12等題目針對勾股定理的內(nèi)容適當(dāng)?shù)募右造柟?,特別是第11、12題側(cè)重對面積法運(yùn)用的鞏固。
勾股定理是幾何中幾個重要定理之一,揭示了直角三角形三邊之間的數(shù)量關(guān)系,是對直角三角形性質(zhì)的進(jìn)一步學(xué)習(xí)和深入,它可以解決許多直角三角形中的計算問題,在實際生活中用途很大。它不僅在數(shù)學(xué)領(lǐng)域而且在其他自然科學(xué)領(lǐng)域中也被廣泛地應(yīng)用,而說明數(shù)學(xué)是一門基礎(chǔ)學(xué)科,是人們生活的基本工具。
學(xué)生接受勾股定理的內(nèi)容“在直角三角形中兩直角邊的平方和等于斜邊的平方”這一事實從學(xué)習(xí)的角度不難,包括對它的應(yīng)用也不成問題。但對勾股定理的論證,教材中介紹的面積證法即:依據(jù)圖形經(jīng)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積就不會改變。學(xué)生接受起來有障礙(是第一次接觸面積法),因此從面積的“分割”“補(bǔ)全”兩種方法進(jìn)行演示同時學(xué)生動手親自拼接圖形構(gòu)成“趙爽弦圖”并親自驗證三個正方形之間的面積關(guān)系得到勾股定理的證明。有利的讓學(xué)生經(jīng)歷了“感知、猜想、驗證、概括、證明”的認(rèn)知過程,感觸知識的產(chǎn)生、發(fā)展、形成以提高學(xué)生學(xué)習(xí)習(xí)慣和能力。
本節(jié)的后續(xù)學(xué)習(xí)中,對勾股定理運(yùn)用的探究和勾股定理逆命題的論證和應(yīng)用,都是將圖形與數(shù)量緊密的結(jié)合,將有利的培養(yǎng)學(xué)生數(shù)形結(jié)合的意識以提高學(xué)生分析問題、解決問題的能力。同時也為后期學(xué)習(xí)四邊形、圓中的有關(guān)計算及計算物體面積奠定基礎(chǔ),因此本節(jié)課無論從知識的角度還是從數(shù)學(xué)技能、數(shù)學(xué)思想方法及數(shù)學(xué)活動經(jīng)驗等層面都起著舉足輕重的作用。為此,教學(xué)重點(diǎn):勾股定理的內(nèi)容教學(xué)難點(diǎn):勾股定理的論證
勾股定理教案(篇7)
《勾股定理》教學(xué)設(shè)計范文
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
勾股定理的探究、證明及簡單應(yīng)用.
2.內(nèi)容解析
勾股定理的內(nèi)容是:如果直角三角形的兩條直角邊長分別為a、b,斜邊長為c,那么
.它揭示了直角三角形三邊之間的數(shù)量關(guān)系.在直角三角形中,已知任意兩邊長,就可以求出第三邊長.勾股定理常用來求解線段長度或距離問題.
勾股定理的探究是從特殊的等腰直角三角形出發(fā),到網(wǎng)格中的直角三角形,再到一般的直角三角形,體現(xiàn)了從特殊到一般的探探索、發(fā)現(xiàn)和證明的過程.證明勾股定理的關(guān)鍵是利用割補(bǔ)法求以斜邊為邊長的正方形的面積,教學(xué)中要注意引導(dǎo)學(xué)生通過探索去發(fā)現(xiàn)圖形的性質(zhì),提出一般的猜想,并獲得定理的證明.
我國古代在數(shù)學(xué)方面又許多杰出的研究成果,對于勾股定理的研究就是一個突出的例子.教學(xué)中可以介紹我國古代在勾股定理的證明和應(yīng)用方面取得的成就和作出的貢獻(xiàn),以培養(yǎng)學(xué)生的民族自豪感;圍繞證明勾股定理的過程,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和信心.
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):探索并證明勾股定理.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)經(jīng)歷勾股定理的探究過程.了解關(guān)于勾股定理的文化歷史背景,通過對我國古代研究勾股定理的成就的介紹,培養(yǎng)學(xué)生的民族自豪感.
(2)能用勾股定理解決一些簡單問題.
2.目標(biāo)解析
(1)學(xué)生通過觀察直角三角形的三邊為邊長的正方形面積之間的關(guān)系,歸納并合理地用數(shù)學(xué)語言表示勾股定理的結(jié)論.理解趙爽弦圖的意義及其證明勾股定理的思路,能通過割補(bǔ)法構(gòu)造圖形證明勾股定理.了解勾股定理相關(guān)的史料,知道我國古代在研究勾股定理上的杰出成就.
(2)學(xué)生能運(yùn)用勾股定理進(jìn)行簡單的計算,關(guān)鍵是已知直角三角形的兩邊長能求第三條邊的長度.
三、教學(xué)問題診斷分析
勾股定理是反映直角三角形三邊關(guān)系的一個特殊的結(jié)論.在正方形網(wǎng)格中比較容易發(fā)現(xiàn)以等腰直角三角形三邊為邊長的正方形的面積關(guān)系,進(jìn)而得出三邊之間的關(guān)系.但要從等腰直角三角形過渡到網(wǎng)格中的一般直角三角形,提出合理的猜想,學(xué)生有較大困難.學(xué)生第一次嘗試用構(gòu)造圖形的方法來證明定理存在較大的困難,解決問題的關(guān)鍵是要想到用合理的割補(bǔ)方法求以斜邊為邊的正方形的面積.因此,在教學(xué)中需要先引導(dǎo)學(xué)生觀察網(wǎng)格背景下的正方形的面積關(guān)系,然后思考沒有網(wǎng)格背景下的正方形的面積關(guān)系,再將這種關(guān)系表示成邊長之間的關(guān)系,這有利于學(xué)生自然合理地發(fā)現(xiàn)和證明勾股定理.
本節(jié)課的教學(xué)難點(diǎn)是:勾股定理的探究和證明.
四、教學(xué)過程設(shè)計
1. 創(chuàng)設(shè)情境 復(fù)習(xí)引入
國際數(shù)學(xué)家大會是最高水平的全球性數(shù)學(xué)學(xué)科學(xué)術(shù)會議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會”.2002年在北京召開了第24屆國際數(shù)學(xué)家大會.右圖就是大會會徽的圖案.你見過這個圖案嗎?它由哪些我們學(xué)過的基本圖形組成?這個圖案有什么特別的意義?前面我們學(xué)習(xí)了有關(guān)三角形的知識,我們知道,三角形有三個角和三條邊.
問題1 三個角的數(shù)量關(guān)系明確嗎?三條邊的數(shù)量關(guān)系明確嗎?
師生活動 教師引導(dǎo),學(xué)生回答。
【設(shè)計意圖】回顧三角形的內(nèi)角和是180°以及三角形任何兩邊的和大于第三邊,由三角形三邊的不等關(guān)系引導(dǎo)學(xué)生思考,三角形三邊之間是否存在等量關(guān)系.
我們學(xué)習(xí)過等腰三角形,知道等腰三角形是兩邊相等的特殊的三角形,它有許多特殊的性質(zhì).研究特例是數(shù)學(xué)研究的一個方向,直角三角形是有一個角為直角的特殊三角形,中國古代人把直角三角形中較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”.
直角三角形中最長的邊是哪條邊?為什么?它們除了大小關(guān)系,有沒有更具體的數(shù)量關(guān)系呢?這就是我們要研究的問題.
2.觀察思考,探究定理
問題2 相傳2500多年前,畢達(dá)哥拉斯有一次在朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面圖案反映了直角三角形三邊的某種數(shù)量關(guān)系.三個正方形A,B,C的面積有什么關(guān)系?
畢達(dá)哥拉斯(公元前數(shù)學(xué)家、天文學(xué)家。
師生活動 學(xué)生觀察圖形,分析、思考其中隱含的規(guī)律.通過直接數(shù)等腰直角三角形的個數(shù),或者用割補(bǔ)的方法將小正方形A,B中的等腰直角三角形補(bǔ)成一個大正方形,得出結(jié)論:小正方形A,B的面積之和等于大正方形C的面積.
追問 由這三個正方形A,B,C的邊長構(gòu)成的等腰直角三角形三條邊長之間有怎樣的特殊關(guān)系?
師生活動 教師引導(dǎo)學(xué)生直接由正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方.
【設(shè)計意圖】從最特殊的直角三角形入手,通過觀察正方形面積關(guān)系得到三邊關(guān)系,對等腰直角三角形邊長關(guān)系進(jìn)行初步的一般化.
問題3 在網(wǎng)格中的一般的'直角三角形,以它的三邊為邊長的三個正方形A,B,C的面積是否也有類似的關(guān)系?
師生活動 學(xué)生動手計算,分別求出A,B,C的面積并尋求它們之間的關(guān)系.
追問 正方形A,B,C所圍成的直角三角形三條邊之間有怎樣的關(guān)系?
師生活動 學(xué)生獨(dú)立思考后分組討論,難點(diǎn)是求以斜邊為邊長的正方形面積,可由師生共同總結(jié)得出可以通過割、補(bǔ)兩種方法求出其面積,教師在學(xué)生回答的基礎(chǔ)上歸納方法---割補(bǔ)法.可求得C的面積為13,教師引導(dǎo)學(xué)生直接由正方形的面積等于邊長的平方歸納出:直角三角形兩條直角邊的平方和等于斜邊的平方.
【設(shè)計意圖】為方便計算,網(wǎng)格中的直角三角形邊長通常設(shè)定為整數(shù),進(jìn)一步體會面積割補(bǔ)法,為探究無網(wǎng)格背景下直角三角形三邊關(guān)系打下基礎(chǔ),提供方法.
問題4 通過前面的探究活動,思考:直角三角形三邊之間應(yīng)該有什么關(guān)系?
師生活動 教師引導(dǎo)學(xué)生表述:如果直角三角形兩直角邊長分別為,,斜邊長為,那么
【設(shè)計意圖】在網(wǎng)格背景下通過觀察和分析得出了等腰直角三角形和一般的直角三角形的三邊關(guān)系后,猜想直角三角形的三邊關(guān)系是很容易的.
問題5 以上直角三角形的邊長都是具體的數(shù)值,一般情況下,如果直角三角形的兩直角邊分別為a,b,斜邊長為c,我們的猜想仍然成立嗎?
師生活動 要求學(xué)生通過獨(dú)立思考,用a,b表示c.如圖,用“割”的方法可得;用“補(bǔ)”的方法可得.這兩個式子經(jīng)過整理都可以得到即直角三角形兩直角邊的平方和等于斜邊的平方.中國人稱它為“勾股定理”,外國人稱它為“畢達(dá)哥拉斯定理”.
【設(shè)計意圖】從網(wǎng)格驗證到脫離網(wǎng)格,通過割補(bǔ)構(gòu)造圖形和計算推導(dǎo)出一般結(jié)論.
問題6 歷史上各國對勾股定理都有研究,下面我們看看我國古代的數(shù)學(xué)家趙爽對勾股定理的研究,并通過小組合作完成教科書拼圖法證明勾股定理.
師生活動 教師展示“弦圖”,并介紹:這個圖案是公元3世紀(jì)三國時期的趙爽在注解《周髀算經(jīng)》時給出的,人們稱它為“趙爽弦圖”,趙爽根據(jù)此圖指出:四個全等的直角三角形(朱實)可以如圖圍成一個大正方形,中間部分是一個小正方形(黃實).我們剛才用割的方法證明使用的就是這個圖形,教師介紹勾股定理相關(guān)史料,勾股定理的證明方法據(jù)說有400多種,有興趣的同學(xué)可以搜集研究一下.
【設(shè)計意圖】通過拼圖活動,調(diào)動學(xué)生思維的積極性,為學(xué)生提供從事數(shù)學(xué)活動的機(jī)會,發(fā)展學(xué)生的形象思維,使學(xué)生對定理的理解更加深刻,體會數(shù)學(xué)中數(shù)形結(jié)合的思想.通過對趙爽弦圖的介紹,了解我國古代數(shù)學(xué)家對勾股定理的發(fā)現(xiàn)及證明所做出的貢獻(xiàn),增強(qiáng)民族自豪感,通過了解勾股定理的證明方法,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心.
3.初步應(yīng)用,鞏固新知
例1 畫一個直角三角形
,
,它的兩直角邊分別是
,量一量它的斜邊
是多少厘米?算一算,你量的結(jié)果對嗎?
師生活動 學(xué)生操作,教師個別指導(dǎo).
【設(shè)計意圖】通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力并正確運(yùn)用勾股定理解決直角三角形的邊長問題.通過測量進(jìn)一步驗證勾股定理所得結(jié)論的正確性.
例2 在直角三角形中,各邊的長如圖,求出未知邊的長度.
師生活動 學(xué)生計算,教師檢驗.
【設(shè)計意圖】勾股定理是通過構(gòu)造圖形法通過面積關(guān)系進(jìn)行證明的.所以勾股定理本質(zhì)上是反映面積關(guān)系的.如果直角三角形的兩條直角邊長分別為
,
,斜邊長為
,那么
.通過對等式變形,可以得出直角三角形三邊之間的關(guān)系:
;
;
.在直角三角形中,已知兩邊,求第三邊,應(yīng)用勾股定理求解,也可建立方程解決問題,滲透方程思想.
例3 螞蟻沿圖中的折線從A點(diǎn)爬到D點(diǎn),一共爬了多少厘米?
師生活動 學(xué)生觀察、思考、計算,教師檢驗.
【設(shè)計意圖】設(shè)計實際問題背景,提高學(xué)生分析問題和解決問題的能力.
4.歸納小結(jié),反思提高
師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題:
(1)勾股定理總結(jié)的是什么數(shù)量關(guān)系?
(2)勾股定理有什么作用?
(3)閱讀教科書,總結(jié)教科書提供的勾股定理的其他證明方法.了解中國人的偉大和外國人的智慧.
【設(shè)計意圖】讓學(xué)生從不同角度談本節(jié)課學(xué)習(xí)的主要內(nèi)容,在學(xué)習(xí)過程中感受到中國數(shù)學(xué)文化博大精深和數(shù)學(xué)的美,感悟數(shù)形結(jié)合的思想,增強(qiáng)對數(shù)學(xué)學(xué)習(xí)的自信.
5.布置作業(yè)
(1)教科書第28頁第1題;
(2)通過互聯(lián)網(wǎng)收集定理的多種證法.自主探究定理的證明.
五、目標(biāo)檢測設(shè)計
1.直角三角形的周長為12,斜邊長為5,其面積為( )
A.12 B.10 C.8 D.6
【設(shè)計意圖】勾股定理的簡單計算,結(jié)合三角形的周長和面積知識進(jìn)行求解.
2.等邊三角形的高是h,則它的面積是( )
A.
B.
C.
D.
【設(shè)計意圖】勾股定理的應(yīng)用和三角形的面積公式.
3.直角三角形
中,
,
,求
和
勾股定理教案(篇8)
一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(多數(shù)為具體的知識和方法)。
二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時對大家進(jìn)行思想教育。
通過本節(jié)課的教學(xué),讓我更深刻地認(rèn)識到:
1.新課改理念只有全面滲透到教育教學(xué)工作中,與平時工作緊密結(jié)合,才能夠促進(jìn)學(xué)生的全面發(fā)展;
2.教師要充分利用課堂內(nèi)容為整體課程目標(biāo)服務(wù),不要僅限于本節(jié)課的知識目標(biāo)與要求,就知識“教”知識,而要通過知識的學(xué)習(xí)獲得學(xué)習(xí)這些知識的方法,同時,還要充分利用課堂對學(xué)生進(jìn)行情感態(tài)度價值觀的教育,真正讓教材成為教育學(xué)生的素材,而不是學(xué)科教學(xué)的全部;
3.要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機(jī)會。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現(xiàn)教育的本來目標(biāo),而且也一定能讓學(xué)生“考出”好的成績。
勾股定理教案(篇9)
一、教材分析
本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時.在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識形成知識鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。
在探求勾股定理的過程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。把三角形有一個直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計算的格點(diǎn)圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節(jié)課,要創(chuàng)設(shè)問題串,提供學(xué)生活動的方案,讓學(xué)生在活動中思考,在思考中創(chuàng)新,認(rèn)識和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計算問題.
二、教學(xué)目標(biāo)
1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。
2、讓學(xué)生經(jīng)歷拼圖實驗、計算面積的過程,在過程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過程中發(fā)揮自己特長,通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過老師的介紹,感受勾股定理的文化價值.
3、能說出勾股定理,并能用勾股定理解決簡單問題.
三、教學(xué)重點(diǎn)
勾股定理的探索過程.
四、教學(xué)難點(diǎn)
將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.
五、教學(xué)方法與教學(xué)手段
采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境.給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有目的地探索.
六、教學(xué)過程
(一)創(chuàng)設(shè)情境 提出問題
1.同學(xué)們,我們已經(jīng)學(xué)過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?
2.如果又已知這兩邊的夾角,那么第三邊的長是多少?
3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節(jié)課就讓我們一起來探討這個問題.板書:直角三角形三邊數(shù)量關(guān)系.
(這是對三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生從原有的認(rèn)知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo).讓學(xué)生體會到當(dāng)一般性的問題不好解決時,可以先將一般問題轉(zhuǎn)化為特殊問題來研究.)
(二)實踐探索 猜想歸納
1、用什么方法來探求板書:直角三角形三邊數(shù)量關(guān)系呢?
回憶我們曾經(jīng)利用圖形面積探索過數(shù)學(xué)公式,大家還記得在哪用過嗎?
(學(xué)生討論)
課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.
今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系.
(從學(xué)生已有的學(xué)習(xí)經(jīng)驗出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺得解決今天問題的方法并不陌生,增強(qiáng)探索問題的信心.)
2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個與正方形ABDE大小一樣的正方形嗎?
(同位利用教師提供的學(xué)案,合作拼圖。)
通過拼圖,你有什么發(fā)現(xiàn)?
(如圖3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動,引發(fā)了學(xué)生的猜想,增加了研究的趣味性,鍛煉了學(xué)生的空間思維能力和動手能力.體現(xiàn)了活動——數(shù)學(xué)的思想.)
3、拼圖活動引發(fā)我們的靈感;運(yùn)算推演
證實我們的猜想.為了計算面積方便,我們可
將這幅圖形放在方格紙中.如果每一個小方格的邊長記作“1”,請你求出圖中三個正方形的面積(圖4).
(學(xué)生容易回答SP=9,SQ=16。)
你是如何得到的?
(可以數(shù)圖形中的小方格的個數(shù),也可以通
過正方形面積公式計算得到。)
如何計算 ?
(的求法是這節(jié)課的難點(diǎn),這時可讓學(xué)生先在學(xué)案上獨(dú)立分析,再通過小組交流,最后由小組代表到臺前展示.學(xué)生可能提出割(圖5)、補(bǔ)(圖6)、平移(圖7)、旋轉(zhuǎn)(圖8)等方法,旋轉(zhuǎn)這種方法只適用于斜邊為整數(shù)的情況,沒有一般性,若有學(xué)生提出,應(yīng)提醒學(xué)生.)
4、肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生打開書回顧課本上的提示.從小明、小麗的方法中你能得到什么啟發(fā)?
(把圖形進(jìn)行“割”和“補(bǔ)”,即把不能利用網(wǎng)格線直接計算面積的圖形轉(zhuǎn)化成可以利用網(wǎng)格線直接計算面積的圖形,讓學(xué)生體會將較難的問題轉(zhuǎn)化為簡單問題的思想)
5、再給出直角邊為5和3的直角三角形(圖9),讓學(xué)生計算分別以三邊作為邊所作的正方形面積.
(這是轉(zhuǎn)化思想,也是“割補(bǔ)”方法的再一次應(yīng)用.在
前面的探求過程中有的學(xué)生沒能自己做出來,提供再一次的機(jī)會,可讓全體學(xué)生再次感受轉(zhuǎn)化思想,體驗成功的樂趣.)
通過計算,你發(fā)現(xiàn)這三個正方形面積間有什么關(guān)系嗎?
(SP+SQ=SR,要給學(xué)生留有思考時間.)
6、通過以上的實驗、操作、計算,我們發(fā)現(xiàn)以直角三角形的各邊為邊所作的正方形的面積之間有什么關(guān)系呢?同學(xué)們還有什么疑問嗎?
(以直角邊為邊所作的`正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學(xué)生提出我們討論的都是邊長為整數(shù)的直角三角形情況,那么邊長是小數(shù)時,結(jié)論是否成立?教師就演示以下實驗。)
利用方格紙,我們方便計算直角邊為整數(shù)的情況,若直角邊為小數(shù)時,所得到的正方形面積之間也有如上關(guān)系嗎?
將網(wǎng)格線去掉,利用《幾何畫板》的度量工具可以看到SP+SQ=SR.
(利用幾何畫板的高效性、動態(tài)性反映這一過程,讓學(xué)生體會到更多的特殊情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻.)
7、我們這節(jié)課是探索直角三角形三邊數(shù)量關(guān)系.至此,你對直角三角形三邊的數(shù)量關(guān)系有什么發(fā)現(xiàn)?
(面積是邊長的平方,面積間的等量關(guān)系轉(zhuǎn)化為邊長間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于下邊的平方.)
(這一問題的結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié),交流,表達(dá).)
8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進(jìn)而給出字母表達(dá)式.一段緊張的探索過程之后,播放一段有關(guān)勾股歷史的錄音.
(這樣既活躍了課堂氣氛,又展現(xiàn)了勾股歷史,激發(fā)學(xué)生熱愛祖國悠久歷史文化,
激勵學(xué)生發(fā)奮學(xué)習(xí)的情感.)
9、閱讀課本,提出問題
(讓學(xué)生有將知識內(nèi)化為自己的知識結(jié)構(gòu)的過程,教師巡視,對有困難的同學(xué)給予幫助,促進(jìn)全班同學(xué)共同進(jìn)步,體現(xiàn)面向全體的教學(xué)原則.)
(三)課堂練習(xí) 鞏固新知
1.完成課本第45頁練習(xí)第1題、第2題.
(1)求下列直角三角形中未知邊的長:
(2)求下列圖中未知數(shù)x、y、z的值:
(充分利用課本,在前面閱讀的基礎(chǔ)上做課本上的練習(xí)題。提問學(xué)生口答,老師再規(guī)范板書一題.通過對勾股定理的基本應(yīng)用,讓學(xué)生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)
2、 如圖:一塊長約80 m、寬約60 m的長方形草坪,被幾個不自覺的學(xué)生沿對角線踏出了一條斜“路”,這種情況在生活中時有發(fā)生。請問同學(xué)們:
(1)這幾位同學(xué)為什么不走正路,走斜“路”?
(2)他們知道走斜“路”比正路少走幾步嗎?
(3)他們這樣這樣做,值得嗎?
(這是一道貼近學(xué)生生活的實例,在勾股定理的運(yùn)用中滲透了德育教育.)
(四)課堂小結(jié) 布置作業(yè)
1、通過本節(jié)課的學(xué)習(xí),大家有什么收獲?有什么疑問?你認(rèn)為還有什么要繼續(xù)探索的問題?
(學(xué)生總結(jié)本堂課的收獲,可以是知識、應(yīng)用、數(shù)學(xué)思想方法以及獲取新知的途徑等.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生的綜合表達(dá)能力.如果學(xué)生沒有提出繼續(xù)要探討的問題,教師可以引導(dǎo)學(xué)生思考:直角三角形的三邊有特殊的等量關(guān)系,一般三角形三邊是否也存在一種等量關(guān)系呢?再展示上課開始的問題:如果一個三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內(nèi)容,首尾呼應(yīng),激發(fā)學(xué)生不滿足于現(xiàn)狀,有不斷提出新問題的欲望,即培養(yǎng)學(xué)生的創(chuàng)新意識.)
2、作業(yè)
(1)課本第471頁第2題,并完成第45頁的實驗。
(2)在以下網(wǎng)頁中你可以找到有關(guān)勾股定理的豐富的內(nèi)容,請你結(jié)合本節(jié)課的學(xué)習(xí)
和從網(wǎng)上或書本上自學(xué)到的知識寫一篇有關(guān)勾股定理的小論文,題目自定,一周后交給課代表并展示交流.
n
(作業(yè)的多元化、多層次,有利于全體學(xué)生的全面素質(zhì)發(fā)展。)教育大全
七、教學(xué)設(shè)計說明:
本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察--猜想--歸納--驗證--應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想.
本節(jié)課從學(xué)生的原有認(rèn)知出發(fā)提出問題,揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理.教科書設(shè)計了在方格紙上通過計算面積的方法探究勾股定理的活動,在此基礎(chǔ)上,為了更好地展示這一探索過程,本節(jié)課先讓學(xué)生回顧利用圖形面積探求數(shù)學(xué)公式的經(jīng)歷,以此確定研究方法.繼而設(shè)計了剪紙活動,從中引發(fā)學(xué)生的猜想,再利用幾何畫板這一工具帶領(lǐng)學(xué)生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學(xué)生充分經(jīng)歷這一觀察、猜想、歸納的過程.其中SR的求法是探求過程中的難點(diǎn),應(yīng)讓學(xué)生充分地思考、討論、總結(jié)方法.通過對特殊到一般的考查,讓學(xué)生主動建立由數(shù)到形,由形到數(shù)的聯(lián)想,從中使學(xué)生不斷積累數(shù)學(xué)活動的經(jīng)驗,歸納出直角三角形三邊數(shù)量之間的關(guān)系.在教學(xué)中鼓勵學(xué)生采用觀察分析,自主探索,合作交流的學(xué)習(xí)方法,培養(yǎng)學(xué)生主動的動手,動腦,動口的學(xué)習(xí)習(xí)慣和能力,使學(xué)生真正成為學(xué)習(xí)的主人.
除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.
練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.題目的設(shè)計中滲透了德育教育,拓展了學(xué)生的空間思維,使得一節(jié)幾何課全面地考查了學(xué)生的各方面思維.
讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識的途徑等方面.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.
作業(yè)為了達(dá)到提高鞏固的目的,提供給學(xué)生網(wǎng)址是為了拓展學(xué)生的視野,以期學(xué)生能主動地探求對勾股定理更深入的認(rèn)識.
勾股定理教案(篇10)
學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。
(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。
(2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性。
教學(xué)重點(diǎn):
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
教學(xué)難點(diǎn):
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題。
如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點(diǎn)連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算。
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務(wù)嗎?
(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
(3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
1.甲、乙兩位探險者到沙漠進(jìn)行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠(yuǎn)?
2.如圖,臺階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離。
3.有一個高為1、5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0、5米,問這根鐵棒有多長?
內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
勾股定理教案(篇11)
1.靈活應(yīng)用勾股定理及逆定理解決實際問題.
2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.
⑵依題意畫出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因為242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR―∠QPS=45°.
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.
例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;
⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.