高一函數(shù)課件
發(fā)布時(shí)間:2023-07-03 高一函數(shù)課件 高一課件高一函數(shù)課件。
這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學(xué)。
高一函數(shù)課件【篇1】
一、說教材
(一)地位與重要性
函數(shù)的最值是《高中數(shù)學(xué)》一年級(jí)第一學(xué)期的內(nèi)容,是函數(shù)基本性質(zhì)的重要部分。在實(shí)際問題的解決過程中,建立了變量間的函數(shù)關(guān)系后,求最值培養(yǎng)了學(xué)生運(yùn)用基礎(chǔ)理論研究具體問題的能力,這也是學(xué)習(xí)數(shù)學(xué)的目的之一。函數(shù)最值的教學(xué)在培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想同時(shí)也可以使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)思維的學(xué)習(xí)習(xí)慣。函數(shù)的思想是一種重要的數(shù)學(xué)思想,它體現(xiàn)了運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的觀點(diǎn),本節(jié)課對(duì)初高中知識(shí)的銜接起到了承上啟下的作用。函數(shù)的最值問題與不等式、方程、參數(shù)范圍的探求及解析幾何等知識(shí)綜合在一起往往能編擬綜合性較強(qiáng)的新型題目,可以綜合考查學(xué)生應(yīng)用函數(shù)知識(shí)分析解決問題的能力,從而成為高考的高檔解答題,是高考測試的熱點(diǎn)之一。
(二)教學(xué)目標(biāo)
知識(shí)與能力目標(biāo):掌握求二次函數(shù)最值的常用方法——配方法,培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想和運(yùn)用基礎(chǔ)理論研究解決具體問題的能力。
情感目標(biāo):經(jīng)歷和體驗(yàn)數(shù)學(xué)活動(dòng)的過程以及數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的積極性,樹立學(xué)好數(shù)學(xué)的信心。
過程目標(biāo):通過課堂學(xué)習(xí)活動(dòng)培養(yǎng)學(xué)生相互間的合作交流,且在相互交流的過程中養(yǎng)成學(xué)生表述、抽象、總結(jié)的思維習(xí)慣,進(jìn)而獲得成功的體驗(yàn)。
科研目標(biāo):在教師指導(dǎo)下學(xué)生經(jīng)歷和體驗(yàn)探究過程的方法。
(三)教學(xué)重難點(diǎn)
重點(diǎn):配方法、數(shù)形結(jié)合求二次函數(shù)的最值。
難點(diǎn):二次函數(shù)在閉區(qū)間上的最值。
二、說教法與學(xué)法
在初中學(xué)生已經(jīng)學(xué)習(xí)過二次函數(shù)的知識(shí),根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,本節(jié)課主要采用探究式教學(xué)法和講練結(jié)合法進(jìn)行教學(xué)。教學(xué)過程也是一個(gè)學(xué)生主動(dòng)建構(gòu)的過程,教師不能無視學(xué)生已有的經(jīng)驗(yàn),企圖從外部將新知識(shí)強(qiáng)行裝入學(xué)生的頭腦,而是要把學(xué)生現(xiàn)有的知識(shí)經(jīng)驗(yàn)作為新知識(shí)的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”及發(fā)現(xiàn)新的知識(shí)經(jīng)驗(yàn)。在本堂課學(xué)習(xí)中,學(xué)生發(fā)揮主體作用,主動(dòng)地思考探究求解最值的最優(yōu)策略,并歸納出自己的解題方法,將知識(shí)主動(dòng)納入已建構(gòu)好的知識(shí)體系,真正做到“學(xué)會(huì)學(xué)習(xí)”。
三、說教學(xué)過程
(一)課題引入
環(huán)節(jié)
教學(xué)過程
設(shè)計(jì)說明
課題講解
例:動(dòng)物園要建造一面靠墻的2間面積相同的長方形熊貓居室,如果可供建造圍墻的材料長是30米,那么寬為多少米時(shí)才能使所建造的熊貓居室面積最大?熊貓居室的最大面積是多少平方米?
學(xué)生通過此例感受到在實(shí)際問題中需要解決函數(shù)的最值問題,從而引發(fā)學(xué)習(xí)本節(jié)內(nèi)容的興趣。
教學(xué)手段:用PPT展示題目
教師引導(dǎo)學(xué)生討論解答,并個(gè)別答疑、點(diǎn)撥,收集學(xué)生的解法,挑出若干答案在實(shí)物投影儀上進(jìn)行展示,并進(jìn)行點(diǎn)評(píng)。
學(xué)生的解法主要為函數(shù)最值法和利用基本不等式求最值,由學(xué)生評(píng)價(jià)兩種方法,為閉區(qū)間上二次函數(shù)的最值教學(xué)打下伏筆
教學(xué)手段:實(shí)物投影儀
(二)新知教學(xué)
環(huán)節(jié)
教學(xué)過程
設(shè)計(jì)說明
課題講解
一、函數(shù)最大值和最小值的概念
通過引例最值的求解,引導(dǎo)學(xué)生闡述函數(shù)最大值和最小值的概念。
學(xué)生口述師板書。
一般地,設(shè)函數(shù)在處的函數(shù)值是.如果對(duì)于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最小值,記作;如果對(duì)于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最大值記作。
二、例題講練
例1、求二次函數(shù)的最大值或者最小值:
師生共同完成一例,高一學(xué)生要養(yǎng)成規(guī)范的書寫格式和習(xí)慣,其余題目請(qǐng)學(xué)生板演。
學(xué)生根據(jù)已有的能力和經(jīng)驗(yàn),動(dòng)手得出答案,教師點(diǎn)評(píng)。提醒注意當(dāng)取何值時(shí),函數(shù)取到最值。
培養(yǎng)學(xué)生闡述、分析、理解概念的能力,引入最大值概念的過程是遵循由已知去認(rèn)識(shí)未知的認(rèn)識(shí)規(guī)律進(jìn)行設(shè)計(jì)的,現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。讓學(xué)生從求實(shí)際問題的最大值入手,由熟悉的二次函數(shù)圖象的頂點(diǎn)所具有的特點(diǎn)出發(fā),得到求二次函數(shù)最大值(最小值)的方法。
突出學(xué)生的主體地位,發(fā)揮教師的主導(dǎo)作用,培養(yǎng)思維的嚴(yán)謹(jǐn)性以及轉(zhuǎn)化能力,通過區(qū)間的變化讓學(xué)生充分感受到二次函數(shù)的最值的求解要討論對(duì)稱軸與所給區(qū)間的關(guān)系。
教學(xué)方式:講練結(jié)合
例2、在的條件下,求函數(shù)的最大值和最小值。
教師引導(dǎo)學(xué)生逐步深入思考:
1、定義域與函數(shù)最值是什么關(guān)系?
2、轉(zhuǎn)化后要研究的函數(shù)是什么?
教學(xué)方式:學(xué)生自主探究
高一函數(shù)課件【篇2】
一考綱要求。
1.利用計(jì)算工具,比較指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長等不同函數(shù)類型增長的含義。
2.搜集一些社會(huì)生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。
二.高考趨勢。
函數(shù)知識(shí)應(yīng)用十分廣泛,利用函數(shù)知識(shí)解應(yīng)用問題是數(shù)學(xué)應(yīng)用題的主要類型之一,也是高考考查的重點(diǎn)內(nèi)容。
三.要點(diǎn)回顧
解應(yīng)用題,首先應(yīng)通過審題,分析原型結(jié)構(gòu),深刻認(rèn)識(shí)問題的實(shí)際背景,確定主要矛盾,提出必要的假設(shè),將應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題求解;然后,經(jīng)過檢驗(yàn),求出應(yīng)用問題的解。其解題步驟如下:1.審題2.建模(列數(shù)學(xué)關(guān)系式)3.合理求解純數(shù)學(xué)問題。4.解釋并回答實(shí)際問題。
四.基礎(chǔ)訓(xùn)練。
1.在一定的范圍內(nèi),某種產(chǎn)品的購買量噸與單價(jià)元之間滿足一次函數(shù)關(guān)系,如果購買1000噸,每噸為800元,購買2000噸,每噸700元,那么客戶購買400噸,單價(jià)應(yīng)該是
2.根據(jù)市場調(diào)查,某商品在最近10天內(nèi)的價(jià)格與時(shí)間滿足關(guān)系銷售量與時(shí)間滿足關(guān)系則這種商品的日銷售額的值為.
3.某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向公司交元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元(9時(shí),一年的銷售量為萬件。則分公司一年的利潤L元與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式為.
4.有一批材料可以建成200的圍墻,如果用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個(gè)面積相等的矩形(如圖所示),則圍成矩形場地面積為(圍墻厚度不計(jì))。
5.某建筑商場國慶期間搞促銷活動(dòng),規(guī)定:顧客購物總金額不超過800元,不享受任何折扣,如果顧客購物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,按右表折扣分別累計(jì)計(jì)算。
可以享受折扣優(yōu)惠金額折扣率不超過500元的部分5%超過500元的部分10%某人在此商場購物總金額為元,可以獲得的折扣金額為元,則關(guān)于的解析式為;若元,則此人購物總金額為元。
6.在邊長為4的正方形ABCD的邊上有一點(diǎn)p沿著折線BCDA,由B點(diǎn)(起點(diǎn))向A點(diǎn)(終點(diǎn))移動(dòng),設(shè)p點(diǎn)移動(dòng)的路程為,的面積與點(diǎn)p移動(dòng)的路程間的函數(shù)關(guān)系式為
五.例題精講。
例1.某村計(jì)劃建造一個(gè)室內(nèi)面積為800的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1寬的通道,沿前側(cè)內(nèi)墻保留3寬的空地,當(dāng)矩形溫室的邊長各為多少時(shí),蔬菜的種植面積?種植面積是多少?
例2.某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出當(dāng)每輛車的月租金每增加50元時(shí),未租出車將增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元,兩者都由租賃公司支付。
1當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
2當(dāng)每輛車的月租金定為多少元時(shí),公司的月收益?月收益是多少?
例3.某城市現(xiàn)有人口100萬人,如果每年自然增長率為1.2﹪,試解答下面問題
1寫出城市人口總數(shù)(萬人)與年份(年)的函數(shù)關(guān)系式
2計(jì)算xx以后該城市人口總數(shù)(精確到0.1萬人)
3計(jì)算大約多少年以后該城市人口將達(dá)到120萬人(精確到1年)
六.鞏固練習(xí):.
1.鐵路機(jī)車運(yùn)行1小時(shí)所需的成本由兩部分組成:固定部分元,變動(dòng)部分(元)與運(yùn)行速度(千米/小時(shí))的平方成正比,比例系數(shù)為,如果機(jī)車勻速從甲站開往乙站,甲,乙兩站間的距離為500千米,則機(jī)車從甲站運(yùn)行到乙站的總成本與機(jī)車的速度之間的函數(shù)關(guān)系為
2.某公司有60萬元資金,計(jì)劃投資甲,乙兩個(gè)項(xiàng)目,按要求,對(duì)項(xiàng)目甲的投資不小于對(duì)項(xiàng)目乙投資的倍,且對(duì)每個(gè)項(xiàng)目的投資不少于5萬元,對(duì)項(xiàng)目甲投資1萬元可獲得0.4萬元的利潤,對(duì)項(xiàng)目乙投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃后,在這兩個(gè)項(xiàng)目上共可獲得的利潤為
3.將進(jìn)貨單價(jià)為80元的商品按90元一個(gè)出售時(shí),能賣出400個(gè),已知該商品每個(gè)上漲1元,其銷售量就減少20個(gè),為獲得利潤,售價(jià)應(yīng)定為
4.某地每年消耗木材約20萬立方米,沒立方米木料價(jià)格為240元,為了減少木材消耗,決定按木料價(jià)格的%征收木材稅,這樣每年木材消耗量減少萬立方米,為了既減少木材消耗又保證稅金收入每年不少于90萬元,則的取值范圍為
5.已知鐳經(jīng)過100年剩留原來質(zhì)量的95.76%,設(shè)質(zhì)量為1的鐳經(jīng)過年后的剩留質(zhì)量為,則與之間的函數(shù)關(guān)系為
6.某公司一年共購買某種貨物400噸,每次購買噸,運(yùn)費(fèi)為4萬元/噸,一年總儲(chǔ)存費(fèi)用4萬元,要使一年的總運(yùn)費(fèi)與總儲(chǔ)存費(fèi)用之和最小,則=
7.用總長為14.8的鋼條做一個(gè)長方體容器的框架,如果所做容器有一邊比另一邊長0.5,則它的容積為
8.某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價(jià)格(元/噸)之間的關(guān)系式為:,且生產(chǎn)噸的成本為(元),問該產(chǎn)品每月生產(chǎn)噸才能使利潤達(dá)到,利潤是萬元
9.有甲,乙兩種產(chǎn)品經(jīng)營銷售這兩種商品所獲得的利潤依次是和(萬元)它們與投入的資金(萬元)的關(guān)系,有經(jīng)驗(yàn)公式,。今有3萬元資金投入經(jīng)營甲、乙兩種商品,為了獲得利潤,對(duì)甲、乙兩種商品的資金投入分別應(yīng)是多少?最多能獲得多大的利潤?
高一函數(shù)課件【篇3】
教學(xué)目標(biāo):
掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會(huì)化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識(shí).
教學(xué)重點(diǎn):
二倍角公式的推導(dǎo)及簡單應(yīng)用.
教學(xué)難點(diǎn):
理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).
教學(xué)過程:
Ⅰ.課題導(dǎo)入
前一段時(shí)間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請(qǐng)同學(xué)們?cè)囃?
先回憶和角公式
sin(α+β)=sinαcosβ+cosαsinβ
當(dāng)α=β時(shí),sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
當(dāng)α=β時(shí)cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
當(dāng)α=β時(shí),tan2α=2tanα1-tan2α
Ⅱ.講授新課
同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α
同學(xué)們是否也考慮到了呢?
另外運(yùn)用這些公式要注意如下幾點(diǎn):
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2+kπ及α≠π4+kπ2(k∈Z)時(shí)才成立,否則不成立(因?yàn)楫?dāng)α=π2+kπ,k∈Z時(shí),tanα的值不存在;當(dāng)α=π4+kπ2,k∈Z時(shí)tan2α的值不存在).
當(dāng)α=π2+kπ(k∈Z)時(shí),雖然tanα的值不存在,但tan2α的值是存在的,這時(shí)求tan2α的值可利用誘導(dǎo)公式:
即:tan2α=tan2(π2+kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情況下,sin2α≠2sinα
例如:sinπ3=32≠2sinπ6=1;只有在一些特殊的情況下,才有可能成立
高一函數(shù)課件【篇4】
1.2解三角形應(yīng)用舉例第二課時(shí)
一、教學(xué)目標(biāo)
1、能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)底部不可到達(dá)的物體高度測量的問題
2、鞏固深化解三角形實(shí)際問題的一般方法,養(yǎng)成良好的研究、探索習(xí)慣。
3、進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的意識(shí)及觀察、歸納、類比、概括的能力
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):結(jié)合實(shí)際測量工具,解決生活中的測量高度問題
難點(diǎn):能觀察較復(fù)雜的圖形,從中找到解決問題的關(guān)鍵條件
三、教學(xué)過程
Ⅰ.課題導(dǎo)入
提問:現(xiàn)實(shí)生活中,人們是怎樣測量底部不可到達(dá)的建筑物高度呢?又怎樣在水平飛行的飛機(jī)上測量飛機(jī)下方山頂?shù)暮0胃叨饶??今天我們就來共同探討這方面的問題
Ⅱ.講授新課
[范例講解]
例1、AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測量建筑物高度AB的方法。
分析:求AB長的關(guān)鍵是先求AE,在ACE中,如能求出C點(diǎn)到建筑物頂部A的距離CA,再測出由C點(diǎn)觀察A的仰角,就可以計(jì)算出AE的長。
解:選擇一條水平基線HG,使H、G、B三點(diǎn)在同一條直線上。由在H、G兩點(diǎn)用測角儀器測得A的仰角分別是、,CD=a,測角儀器的高是h,那么,在ACD中,根據(jù)正弦定理可得
AC=AB=AE+h=AC+h=+h
例2、如圖,在山頂鐵塔上B處測得地面上一點(diǎn)A的俯角=54,在塔底C處測得A處的俯角=50。已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m)
師:根據(jù)已知條件,大家能設(shè)計(jì)出解題方案嗎?
若在ABD中求CD,則關(guān)鍵需要求出哪條邊呢?
生:需求出BD邊。
師:那如何求BD邊呢?
生:可首先求出AB邊,再根據(jù)BAD=求得。
解:在ABC中,BCA=90+,ABC=90-,
BAC=-,BAD=.根據(jù)正弦定理,=
所以AB==在RtABD中,得BD=ABsinBAD=
將測量數(shù)據(jù)代入上式,得BD==≈177(m)
CD=BD-BC≈177-27.3=150(m)
答:山的高度約為150米.
思考:有沒有別的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?
例3、如圖,一輛汽車在一條水平的公路上向正東行駛,到A處時(shí)測得公路南側(cè)遠(yuǎn)處一山頂D在東偏南15的方向上,行駛5km后到達(dá)B處,測得此山頂在東偏南25的方向上,仰角為8,求此山的高度CD.
思考1:欲求出CD,大家思考在哪個(gè)三角形中研究比較適合呢?(在BCD中)
思考2:在BCD中,已知BD或BC都可求出CD,根據(jù)條件,易計(jì)算出哪條邊的長?(BC邊)
解:在ABC中,A=15,C=25-15=10,根據(jù)正弦定理,
=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)
答:山的高度約為1047米
Ⅲ.課堂練習(xí):課本第17頁練習(xí)第1、2、3題
Ⅳ.課時(shí)小結(jié)
利用正弦定理和余弦定理來解題時(shí),要學(xué)會(huì)審題及根據(jù)題意畫方位圖,要懂得從所給的背景資料中進(jìn)行加工、抽取主要因素,進(jìn)行適當(dāng)?shù)暮喕?/p>
Ⅴ.課后作業(yè)
作業(yè):《習(xí)案》作業(yè)五
高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會(huì)求函數(shù)的定義域.
(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對(duì)應(yīng)法則三要素構(gòu)成的整體.
(2)能正確認(rèn)識(shí)和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點(diǎn).
(3)能正確使用“區(qū)間”及相關(guān)符號(hào),能正確求解各類函數(shù)的定義域.
2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號(hào)表示,運(yùn)算等方面的能力有所提高.
學(xué)過什么函數(shù)?
(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
學(xué)生舉出如等,待學(xué)生說完定義后教師打出投影片,給出定義之后教師也舉一個(gè)例子,問學(xué)生.
提問1.是函數(shù)嗎?
(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)
教師由此指出我們爭論的焦點(diǎn),其實(shí)就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化.
二、新課
現(xiàn)在請(qǐng)同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).
(板書)2.2函數(shù)
一、函數(shù)的概念
高一函數(shù)課件【篇5】
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)
1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì).
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫出形如
的圖象.
2.通過對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.
3.通過對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議
高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.
(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)
在
和
時(shí),函數(shù)值變化情況的區(qū)分.
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是
的樣子,不能有一點(diǎn)差異,諸如
,
等都不是指數(shù)函數(shù).
(2)對(duì)底數(shù)
的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來.
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
高一函數(shù)課件【篇6】
說教學(xué)目標(biāo)
熟練地掌握二次函數(shù)的最值及其求法。
說教學(xué)重點(diǎn)
二次函數(shù)的的最值及其求法。
說教學(xué)難點(diǎn)
二次函數(shù)的最值及其求法。
說教學(xué)過程
一、引入
二次函數(shù)的最值:
二、例題分析:
例1:求二次函數(shù)的最大值以及取得最大值時(shí)的值。
變題1:
變題2:求函數(shù)的最大值。
變題3:求函數(shù)的最大值。
例2:已知的最大值為3,最小值為2,求的取值范圍。
例3:若,是二次方程的兩個(gè)實(shí)數(shù)根,求的最小值。
三、隨堂練習(xí):
1、若函數(shù)在上有最小值,最大值2,若,則=________,=________。
2、已知,是關(guān)于的一元二次方程的兩實(shí)數(shù)根,則的最小值是()
A、0 B、1 C、-1 D、2
3、求函數(shù)在區(qū)間上的最大值。
四、回顧小結(jié)
本節(jié)課了以下內(nèi)容:
1、二次函數(shù)的的最值及其求法。
課后作業(yè)
班級(jí):()班姓名__________
一、基礎(chǔ)題:
1、函數(shù)
A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2
2、函數(shù)的最大值是4,且當(dāng)=2時(shí),=5,則=______,=_______。
二、提高題:
3、試求關(guān)于的函數(shù)在上的最大值,高三。
4、已知函數(shù)當(dāng)時(shí),取最大值為2,求實(shí)數(shù)的值。
5、已知是方程的兩實(shí)根,求的最大值和最小值。
三、題:
已知函數(shù),其中,求該函數(shù)的最大值與最小值,并求出函數(shù)取最大值和最小值時(shí)所對(duì)應(yīng)的自變量的值。
高一函數(shù)課件【篇7】
一、學(xué)習(xí)目標(biāo)與自我評(píng)估
1掌握利用單位圓的幾何方法作函數(shù)的圖象
2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期
3會(huì)用代數(shù)方法求等函數(shù)的周期
4理解周期性的幾何意義
二、學(xué)習(xí)重點(diǎn)與難點(diǎn)
“周期函數(shù)的概念”,周期的求解。
三、學(xué)法指導(dǎo)
1、是周期函數(shù)是指對(duì)定義域中所有都有
,即應(yīng)是恒等式。
2、周期函數(shù)一定會(huì)有周期,但不一定存在最小正周期。
四、學(xué)習(xí)活動(dòng)與意義建構(gòu)
五、重點(diǎn)與難點(diǎn)探究
例1、若鐘擺的高度與時(shí)間之間的函數(shù)關(guān)系如圖所示
(1)求該函數(shù)的周期;
(2)求時(shí)鐘擺的高度。
例2、求下列函數(shù)的周期。
(1)(2)
總結(jié):(1)函數(shù)(其中均為常數(shù),且
的周期T=。
(2)函數(shù)(其中均為常數(shù),且
的周期T=。
例3、求證:的周期為。
例4、(1)研究和函數(shù)的圖象,分析其周期性。
(2)求證:的周期為(其中均為常數(shù),
且
總結(jié):函數(shù)(其中均為常數(shù),且
的周期T=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數(shù)
課后思考:能否利用單位圓作函數(shù)的圖象。
六、作業(yè):
七、自主體驗(yàn)與運(yùn)用
1、函數(shù)的周期為()
A、B、C、D、
2、函數(shù)的最小正周期是()
A、B、C、D、
3、函數(shù)的最小正周期是()
A、B、C、D、
4、函數(shù)的周期是()
A、B、C、D、
5、設(shè)是定義域?yàn)镽,最小正周期為的函數(shù),
若,則的值等于()
A、1B、C、0D、
6、函數(shù)的最小正周期是,則
7、已知函數(shù)的最小正周期不大于2,則正整數(shù)
的最小值是
8、求函數(shù)的最小正周期為T,且,則正整數(shù)
的值是
9、已知函數(shù)是周期為6的奇函數(shù),且則
10、若函數(shù),則
11、用周期的定義分析的周期。
12、已知函數(shù),如果使的周期在內(nèi),求
正整數(shù)的值
13、一機(jī)械振動(dòng)中,某質(zhì)子離開平衡位置的位移與時(shí)間之間的
函數(shù)關(guān)系如圖所示:
(1)求該函數(shù)的周期;
(2)求時(shí),該質(zhì)點(diǎn)離開平衡位置的位移。
14、已知是定義在R上的函數(shù),且對(duì)任意有
成立,
(1)證明:是周期函數(shù);
(2)若求的值。
高一函數(shù)課件【篇8】
函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。
1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。
2.方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。方程思想是動(dòng)中求靜,研究運(yùn)動(dòng)中的等量關(guān)系;
3.函數(shù)方程思想的幾種重要形式
(1)函數(shù)和方程是密切相關(guān)的,對(duì)于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(2)函數(shù)與不等式也可以相互轉(zhuǎn)化,對(duì)于函數(shù)y=f(x),當(dāng)y>0時(shí),就轉(zhuǎn)化為不等式f(x)>0,借助于函數(shù)圖像與性質(zhì)解決有關(guān)問題,而研究函數(shù)的性質(zhì),也離不開解不等式;
(3)數(shù)列的通項(xiàng)或前n項(xiàng)和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點(diǎn)處理數(shù)列問題十分重要;
(4)函數(shù)f(x)=(1+x)^n(n∈N*)與二項(xiàng)式定理是密切相關(guān)的,利用這個(gè)函數(shù)用賦值法和比較系數(shù)法可以解決很多二項(xiàng)式定理的問題;
(5)解析幾何中的許多問題,例如直線和二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關(guān)理論;
(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
高一函數(shù)課件【篇9】
(一)通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象概括能力.
(二)理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性.
(三)在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的.
這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,增強(qiáng)直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱的非空數(shù)集;對(duì)于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念——非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想的效果.
1.觀察如下兩圖(圖略),思考并討論以下問題:
(1)這兩個(gè)函數(shù)圖像有什么共同特征?
(2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?
可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱.從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.
2.觀察函數(shù)f(x)=x和f(x)=的.圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征.
可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對(duì)相反數(shù),即對(duì)任一x∈R都有f(-x)=-f(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù).
由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義.
1.奇、偶函數(shù)的定義.
如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).
2.提出問題,組織學(xué)生討論.
(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?
(2)奇、偶函數(shù)的圖像有什么特征?
(3)奇、偶函數(shù)的定義域有什么特征?
[例題]
1.判斷下列函數(shù)的奇偶性.
注:①規(guī)范解題格式;②對(duì)于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.
解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).
(2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內(nèi)是增函數(shù),還是減函數(shù),并證明你的結(jié)論.
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,猜想f(x)在(0,+∞)內(nèi)是增函數(shù),證明如下:
∴f(x)在(0,+∞)上是增函數(shù).
思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?
[練習(xí)]
1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.
4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)?
2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).
4.一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?
高一函數(shù)課件【篇10】
初中數(shù)學(xué)知識(shí)少、淺、難度容易、知識(shí)面笮。高中數(shù)學(xué)知識(shí)廣泛,將對(duì)初中的數(shù)學(xué)知識(shí)推廣和引伸,也是對(duì)初中數(shù)學(xué)知識(shí)的完善。如:初中學(xué)習(xí)的角的概念只是“0—1800”范圍內(nèi)的,但實(shí)際當(dāng)中也有7200和“—300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》,將在三維空間中求一些幾何實(shí)體的體積和表面積;還將學(xué)習(xí)“排列組合”知識(shí),以便解決排隊(duì)方法種數(shù)等問題。如:①三個(gè)人排成一行,有幾種排隊(duì)方法,( =6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學(xué)習(xí)統(tǒng)計(jì)這些排列的數(shù)學(xué)方法。初中中對(duì)一個(gè)負(fù)數(shù)開平方無意義,但在高中規(guī)定了i2=-1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識(shí)同學(xué)們?cè)谝院蟮膶W(xué)習(xí)中將逐漸學(xué)習(xí)到。
(1)初中課堂教學(xué)量小、知識(shí)簡單,通過教師課堂教慢的速度,爭取讓全面同學(xué)理解知識(shí)點(diǎn)和解題方法,課后老師布置作業(yè),然后通過大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對(duì)知識(shí)的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開設(shè)多(有九們課學(xué)生同時(shí)學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時(shí)間三節(jié)課,這樣各科學(xué)習(xí)時(shí)間將大大減少,而教師布置課外題量相對(duì)初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時(shí)間相對(duì)比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個(gè)學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識(shí)讓每個(gè)學(xué)生掌握后再進(jìn)行新課。
初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識(shí)面廣,知識(shí)要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會(huì)貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會(huì)使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開發(fā)在不斷的多樣化,近年來提出了應(yīng)用型題、探索型題和開放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。
其實(shí),自學(xué)能力的提高也是一個(gè)人生活的需要,他從一個(gè)方面也代表了一個(gè)人的素養(yǎng),人的一生只有18---24年時(shí)間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。
初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識(shí)的難度大和知識(shí)面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績也只能是一般程度?,F(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來了不利的思維定勢,對(duì)高中學(xué)生帶來了保守的、僵化的思想,封閉了學(xué)生的豐富反對(duì)創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時(shí)要不就錯(cuò)、要不就答不全面。大多數(shù)學(xué)生不會(huì)分類討論。
初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問題時(shí),大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會(huì)大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時(shí)我們采用對(duì)方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時(shí)的所有根的情形,使學(xué)生很快的掌握了對(duì)所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會(huì)通過對(duì)變量的分析,探索出分析、解決問題的思路和解題所用的數(shù)學(xué)思想。
初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識(shí)的范圍小,知識(shí)層次低,知識(shí)面笮,對(duì)實(shí)際問題的思維受到了局限,就幾何來說,我們都接觸的是現(xiàn)實(shí)生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對(duì)三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實(shí)數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識(shí)的多元化和廣泛性,將會(huì)使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。
高一函數(shù)課件【篇11】
同一只封建宗法制度的黑手,伸出了兩條繩索,捆住了婦女的脖子,朝著相反的方向緊勒,要把勞動(dòng)?jì)D女置于死地而后快。祥林嫂當(dāng)時(shí)就處在這種極端悲慘的境地中:
族權(quán)迫使她寡而再嫁,夫權(quán)又視此為奇恥大辱,使她忍辱含冤,永遠(yuǎn)生活在恥辱之中。祥林嫂以后的悲劇,都是由此而引起的。
那么,祥林嫂是如何對(duì)待新迫害的呢?
3.高潮:
①祥林嫂為什么又一次來到魯四老爺家?
②有人認(rèn)為,喪夫失子有偶然性,這種看法對(duì)不對(duì)?
喪夫失子似乎有偶然性,然而隱藏在偶然性背后的,是那起決定作用的必然性。祥林嫂的丈夫死于舊社會(huì)中蔓延著的傳染病傷寒,阿毛死于祥林嫂的貧困、勞碌。(若不是忙著打柴摘茶養(yǎng)蠶,能讓年僅兩三歲的孩子去剝豆嗎?)因此,實(shí)質(zhì)上,是罪惡的政權(quán)奪走了祥林嫂的丈夫和兒子的生命,使她陷于嫁而再寡的境地。作者開始把批判的筆觸由封建夫權(quán)、族權(quán)擴(kuò)展到封建政權(quán)。
按照封建宗法觀念,婦女出嫁從夫,夫死從子,一旦喪夫失子,則連在家庭中生存的權(quán)利都被剝奪了。因此,大伯來收屋使祥林嫂走投無路,只好再一次來到魯家。她到魯家后,又遭受了更大的打擊。
③在魯四老爺,人們對(duì)待祥林嫂這個(gè)嫁而再寡的不幸女人態(tài)度如何?
A.魯四老爺?shù)膽B(tài)度:
魯四老爺站在頑固維護(hù)封建宗法制度的立場上,從精神上殘酷地虐殺她。他暗暗地告誡四嬸的那段話,就是置祥林嫂于死地而又不露一絲血痕的軟刀子。(通過四嬸先后喊出三句你放著罷,殺人不見血地葬送了祥林嫂的性命。)m.n4507.cn
B.人們的態(tài)度:
人們叫她的聲調(diào)和先前很不同。
魯迅用他那犀利的筆鋒,從廣闊的領(lǐng)域里揭示了封建社會(huì)黑暗的程度。
人們對(duì)祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時(shí)地向人們?cè)V說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。
C.柳媽說鬼:
④祥林嫂是如何對(duì)待這如此沉重的打擊的?其結(jié)果如何?
為了爭得做人的權(quán)利,為了求得一線生存的希望,她在竭盡全力地反抗著:
她背著沉重的精神包袱,整日勞碌著,以便積夠十二元鷹洋,用捐門檻的方法去擺脫人們?cè)陉柺?、陰世間給她設(shè)下的罪名,她忍受著咬嚙人心的嘲笑和侮辱,在無邊的寂寞和悲哀中,默默干了一年,這是何等堅(jiān)韌的反抗精神啊!
而反抗的結(jié)果,出乎柳媽、祥林嫂的預(yù)想,這血淋淋的事實(shí)深刻地說明了:祥林嫂是無法贖罪的,祥林嫂陷入了求生不得,欲死不能的境地。
4.結(jié)局:
當(dāng)祥林嫂被折磨得像木偶人,喪失了當(dāng)牛做馬的條件后,魯四老爺就一腳把她踢出門外,使她終于成了只有那眼珠間或一輪,還可以表示她是一個(gè)活物的僵尸。即使這樣,她在臨死前,還向我提出了三個(gè)問題:
A.一個(gè)人死了之后,究竟有沒有魂靈的?
B.那么,也就有地獄了?
C.那么,死掉的一家的人,都能見面的?
這是對(duì)魂靈的有無表示疑惑。
她希望人死后有靈魂,因?yàn)樗肟匆娮约旱膬鹤?;她害怕人死后有靈魂,因?yàn)樗ε略陉庨g被鋸成兩半。這種疑惑是她對(duì)自己命運(yùn)的疑惑,但也正是這種疑惑,這種無法解脫的矛盾,使她在臨死前受到了極大的精神折磨,最后,悲慘地死去。
從祥林嫂一生的悲慘遭遇中,可以清楚地看到,封建的宗法制度正是用政權(quán)、族權(quán)、神權(quán)、夫權(quán)這四條繩索把祥林嫂活活地勒死的。
祥林嫂一生的悲慘遭遇,正是舊中國千百萬勞動(dòng)?jì)D女悲慘遭遇的真實(shí)寫照。作者正是通過塑造祥林嫂這一典型人物,對(duì)吃人的封建制度和封建禮教進(jìn)行深刻的揭露和有力地抨擊的。
小結(jié):
祥林嫂是生活在舊中國的一個(gè)被踐踏、被愚弄、被迫害、被鄙視的勤勞、善良、質(zhì)樸、頑強(qiáng)的勞動(dòng)?jì)D女的典型形象。
總之,祥林嫂的悲劇是一個(gè)社會(huì)悲劇,造成這一悲劇的根源是封建禮教對(duì)中國勞動(dòng)?jì)D女的摧殘和封建思想對(duì)當(dāng)時(shí)中國社會(huì)的根深蒂固的統(tǒng)治。
第三課時(shí)
本課時(shí)重點(diǎn)分析魯四老爺、我和柳媽的形象。
一、檢查作業(yè):
二、分析魯四老爺:
魯四老爺是當(dāng)時(shí)農(nóng)村中地主階級(jí)的代表人物,是資產(chǎn)階級(jí)民主革命時(shí)期地主階級(jí)知識(shí)分子的典型形象。他政治上迂腐、保守,頑固地維護(hù)舊有的封建制度,反對(duì)一切改革與革命。他思想上反動(dòng),尊崇理學(xué)和孔孟之道。自覺維護(hù)封建制度和封建禮教。他是造成祥林嫂悲劇的一個(gè)重要人物。
1.作者是通過什么手法來刻畫這個(gè)人物的呢?
①間接描寫:
通過魯四老爺?shù)臅筷愒O(shè)的描寫,點(diǎn)明了魯四老爺?shù)纳矸郑ǖ刂麟A級(jí)、封建理學(xué)的衛(wèi)道士),揭露了他的丑惡本質(zhì),從而揭示出他成為殺害祥林嫂的劊子手的深刻的階級(jí)根源和思想根源。
②直接描寫:
A.行動(dòng)描寫:
這表現(xiàn)在祥林嫂被搶走的兩件事上:
當(dāng)婆婆一邊搶人一邊來領(lǐng)工錢時(shí),魯四老爺把祥林嫂一文還沒有的工錢全交給了婆婆。
與此相對(duì)照的是對(duì)被壓迫的寡婦祥林嫂的冷酷無情。
祥林嫂曾那樣辛勤地為魯家勞動(dòng)過,可當(dāng)她遭到惡運(yùn)時(shí),魯家卻無動(dòng)于衷,連祥林嫂走沒走、怎么走的,都毫不過問,只是到了正午,四嬸肚子餓了,這才想起了祥林嫂淘米時(shí)拿走米和淘籮,于是傾巢出動(dòng)分頭尋淘籮;連平時(shí)擺派頭、端架子的魯四老爺都踱出門外,直到河邊,等看見米和淘籮平平正正的放在岸上,旁邊還有一株菜時(shí),這才放心。這場虛驚,入木三分地揭露了:在封建統(tǒng)治者的眼里,一個(gè)勞動(dòng)?jì)D女的命運(yùn)都不如一個(gè)淘籮、一點(diǎn)米、一株菜,魯四老爺冷酷殘忍的嘴臉躍然紙上。
B.語言描寫:
在祥林嫂的問題上,魯四老爺一共開過六次口,說了百十來個(gè)字,卻就把他反動(dòng)、頑固、虛偽自私、陰險(xiǎn)狠毒的性格特征,把他殺害祥林嫂的罪行,揭露得淋漓盡致。
a.祥林嫂被搶前:
b.祥林嫂被搶時(shí):
c.當(dāng)他為尋淘籮,踱到河邊時(shí):
d.緊接著,午飯之后,衛(wèi)婆子又來時(shí):
e.對(duì)四嬸的暗暗告誡:
f.祥林嫂死后:
作為這六次開口背景的是魯四老爺虛偽寒暄后的大罵其新黨,它恰恰深刻地揭示了那六次開口的根源。
三、分析我這一形象:
小說中的我是一個(gè)具有進(jìn)步思想的小資產(chǎn)階級(jí)知識(shí)分子的形象。我有反封建的思想傾向,憎惡魯四老爺,同情祥林嫂。對(duì)祥林嫂提出的魂靈的有無的問題,之所以作了含糊的回答,有其善良的一面;同時(shí)也反映了我的軟弱和無能。
在小說的結(jié)構(gòu)上,我又起著線索的作用。祥林嫂一生的悲慘遭遇都是通過我的所見所聞來展現(xiàn)的。我是事件的見證人。
四、分析柳媽:
問:有人認(rèn)為柳媽是幫助魯四老爺殺害祥林嫂的兇手。你是怎樣來看待這一問題呢?
明確:柳媽和祥林嫂一樣都是舊社會(huì)的受害者。雖然她臉上已經(jīng)打皺,眼睛已經(jīng)干枯,可是在年節(jié)時(shí)還要給地主去幫工,可見,她也是一個(gè)受壓迫的勞動(dòng)?jì)D女。但是,由于她受封建迷信思想和封建禮教的毒害很深,相信天堂、地獄之類邪說和餓死事小,失節(jié)事大的理學(xué)信條,所以她對(duì)祥林嫂改嫁時(shí)頭上留下的傷疤,采取奚落的態(tài)度。至于她講陰司故事給祥林嫂聽,也完全出于善意,主觀愿望還是想為祥林嫂尋求贖罪的辦法,救她跳出苦海,并非要置祥林嫂于死地,只是結(jié)果適得其反。
她的主觀愿望和客觀效果的矛盾說明柳媽是以剝削階級(jí)統(tǒng)治人民的思想──封建禮教和封建迷信思想為指導(dǎo),來尋求解救祥林嫂的藥方的,這不但不會(huì)產(chǎn)生療效的效果,反而給自己的姐妹造成了難以支持的精神重壓,把祥林嫂推向更恐怖的深淵之中。
高一函數(shù)課件【篇12】
1.2解三角形應(yīng)用舉例第四課時(shí)
一、教學(xué)目標(biāo)
1、能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法進(jìn)一步解決有關(guān)三角形的問題,掌握三角形的面積公式的簡單推導(dǎo)和應(yīng)用
2、本節(jié)課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時(shí)總結(jié)出該公式的特點(diǎn),循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識(shí)的生動(dòng)運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點(diǎn),能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點(diǎn),就能很快開闊思維,有利地進(jìn)一步突破難點(diǎn)。
3、讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),加深對(duì)所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗(yàn)愉悅的成功體驗(yàn)
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):推導(dǎo)三角形的面積公式并解決簡單的相關(guān)題目
難點(diǎn):利用正弦定理、余弦定理來求證簡單的證明題
三、教學(xué)過程
Ⅰ.課題導(dǎo)入
[創(chuàng)設(shè)情境]
師:以前我們就已經(jīng)接觸過了三角形的面積公式,今天我們來學(xué)習(xí)它的另一個(gè)表達(dá)公式。在
ABC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們?nèi)绾斡靡阎吅徒潜硎荆?/p>
生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA
師:根據(jù)以前學(xué)過的三角形面積公式S=ah,應(yīng)用以上求出的高的公式如h=bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S=absinC,大家能推出其它的幾個(gè)公式嗎?
生:同理可得,S=bcsinA,S=acsinB
Ⅱ.講授新課
[范例講解]
例1、在ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)
(1)已知a=14cm,c=24cm,B=150;
(2)已知B=60,C=45,b=4cm;
(3)已知三邊的長分別為a=3cm,b=4cm,c=6cm
分析:這是一道在不同已知條件下求三角形的面積的問題,與解三角形問題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識(shí),觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。
解:略
例2、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過測量得到這個(gè)三角形區(qū)域的三條邊長分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm)?
思考:你能把這一實(shí)際問題化歸為一道數(shù)學(xué)題目嗎?
本題可轉(zhuǎn)化為已知三角形的三邊,求角的問題,再利用三角形的面積公式求解。
解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,
cosB==≈0.7532
sinB=0.6578應(yīng)用S=acsinB
S≈681270.6578≈2840.38(m)
答:這個(gè)區(qū)域的面積是2840.38m。
變式練習(xí)1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S
提示:解有關(guān)已知兩邊和其中一邊對(duì)角的問題,注重分情況討論解的個(gè)數(shù)。
答案:a=6,S=9;a=12,S=18
例3、在ABC中,求證:
(1)
(2)++=2(bccosA+cacosB+abcosC)
分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問題,觀察式子左右兩邊的特點(diǎn),用正弦定理來證明
證明:(1)根據(jù)正弦定理,可設(shè)
===k顯然k0,所以
左邊===右邊
(2)根據(jù)余弦定理的推論,
右邊=2(bc+ca+ab)
=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左邊
變式練習(xí)2:判斷滿足sinC=條件的三角形形狀
提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”(解略)直角三角形
Ⅲ.課堂練習(xí)課本第18頁練習(xí)第1、2、3題
Ⅳ.課時(shí)小結(jié)
利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。
Ⅴ.課后作業(yè)
《習(xí)案》作業(yè)七
Yjs21.coM更多幼師資料延伸讀
高一函數(shù)課件收藏
在進(jìn)行學(xué)生授課前,教師通常會(huì)提前準(zhǔn)備好教案課件,相信大家對(duì)此并不陌生。編寫完整的教案有助于完成授課任務(wù),但如何制作牢靠的課件教案呢?不妨來查閱一下欄目小編整理的“高一函數(shù)課件”知識(shí)點(diǎn)總結(jié),希望對(duì)你有所幫助,并歡迎與朋友分享!
高一函數(shù)課件(篇1)
一、教材分析
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時(shí),本節(jié)課是第1課時(shí)。
托馬斯說:“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運(yùn)動(dòng),氣溫升降,投資理財(cái)?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識(shí)世界和預(yù)測未來的重要工具。
函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對(duì)象。同時(shí)函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識(shí)和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡爾的變數(shù),有了變數(shù),運(yùn)動(dòng)就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。
二、學(xué)生學(xué)習(xí)情況分析
函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對(duì)函數(shù)的認(rèn)識(shí)分三個(gè)階段:(一)初中從運(yùn)動(dòng)變化的角度來刻畫函數(shù),初步認(rèn)識(shí)正比例、反比例、一次和二次函數(shù);(二)高中用集合與對(duì)應(yīng)的觀點(diǎn)來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對(duì)、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。
1.有利條件
現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。
初中用運(yùn)動(dòng)變化的觀點(diǎn)對(duì)函數(shù)進(jìn)行定義的,它反映了歷史上人們對(duì)它的一種認(rèn)識(shí),而且這個(gè)定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對(duì)應(yīng)的觀點(diǎn)研究函數(shù)打下了一定的基礎(chǔ)。
2.不利條件
用集合與對(duì)應(yīng)的觀點(diǎn)來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對(duì)學(xué)生的理解能力是一個(gè)挑戰(zhàn),是本節(jié)課教學(xué)的一個(gè)不利條件。
三、教學(xué)目標(biāo)分析
課標(biāo)要求:通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡單函數(shù)的定義域和值域.
1.知識(shí)與能力目標(biāo):
⑴能從集合與對(duì)應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
⑵理解函數(shù)的三要素的含義及其相互關(guān)系;
⑶會(huì)求簡單函數(shù)的定義域和值域
2.過程與方法目標(biāo):
⑴通過豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會(huì)函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;
⑵在函數(shù)實(shí)例中,通過對(duì)關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.
3.情感、態(tài)度與價(jià)值觀目標(biāo):
感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點(diǎn)。
四、教學(xué)重點(diǎn)、難點(diǎn)分析
1.教學(xué)重點(diǎn):對(duì)函數(shù)概念的理解,用集合與對(duì)應(yīng)的語言來刻畫函數(shù);
重點(diǎn)依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對(duì)應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對(duì)應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對(duì)y?1這樣的函數(shù)用運(yùn)動(dòng)變化的觀點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個(gè)數(shù)集之間的一種對(duì)應(yīng)關(guān)系,按照這種觀點(diǎn),使我們對(duì)函數(shù)概念有了更深一層的認(rèn)識(shí),也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會(huì)貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點(diǎn)。
突出重點(diǎn):重點(diǎn)的突出依賴于對(duì)函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。
2.教學(xué)難點(diǎn):第一:從實(shí)際問題中提煉出抽象的概念;第二:符號(hào)“y=f(x)”的含義的理解.
難點(diǎn)依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對(duì)符號(hào)y=f(x)的理解會(huì)受到以前知識(shí)的負(fù)遷移。
突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對(duì)應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對(duì)抽象符號(hào)的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。
五、教法與學(xué)法分析
1.教法分析
本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識(shí)遷移法和知識(shí)對(duì)比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識(shí)基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2.學(xué)法分析
在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識(shí)。
高一函數(shù)課件(篇2)
教學(xué)目標(biāo):
掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會(huì)化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識(shí).
教學(xué)重點(diǎn):
二倍角公式的推導(dǎo)及簡單應(yīng)用.
教學(xué)難點(diǎn):
理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).
教學(xué)過程:
Ⅰ.課題導(dǎo)入
前一段時(shí)間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請(qǐng)同學(xué)們?cè)囃?
先回憶和角公式
sin(α+β)=sinαcosβ+cosαsinβ
當(dāng)α=β時(shí),sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
當(dāng)α=β時(shí)cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
當(dāng)α=β時(shí),tan2α=2tanα1-tan2α
Ⅱ.講授新課
同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α
同學(xué)們是否也考慮到了呢?
另外運(yùn)用這些公式要注意如下幾點(diǎn):
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2+kπ及α≠π4+kπ2(k∈Z)時(shí)才成立,否則不成立(因?yàn)楫?dāng)α=π2+kπ,k∈Z時(shí),tanα的值不存在;當(dāng)α=π4+kπ2,k∈Z時(shí)tan2α的值不存在).
當(dāng)α=π2+kπ(k∈Z)時(shí),雖然tanα的值不存在,但tan2α的值是存在的,這時(shí)求tan2α的值可利用誘導(dǎo)公式:
即:tan2α=tan2(π2+kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情況下,sin2α≠2sinα
例如:sinπ3=32≠2sinπ6=1;只有在一些特殊的情況下,才有可能成立
高一函數(shù)課件(篇3)
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)
1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì).
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫出形如
的圖象.
2.通過對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.
3.通過對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議
高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.
(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)
在
和
時(shí),函數(shù)值變化情況的區(qū)分.
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是
的樣子,不能有一點(diǎn)差異,諸如
,
等都不是指數(shù)函數(shù).
(2)對(duì)底數(shù)
的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來.
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
高一函數(shù)課件(篇4)
函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。
1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。
2.方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。方程思想是動(dòng)中求靜,研究運(yùn)動(dòng)中的等量關(guān)系;
3.函數(shù)方程思想的幾種重要形式
(1)函數(shù)和方程是密切相關(guān)的,對(duì)于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(2)函數(shù)與不等式也可以相互轉(zhuǎn)化,對(duì)于函數(shù)y=f(x),當(dāng)y>0時(shí),就轉(zhuǎn)化為不等式f(x)>0,借助于函數(shù)圖像與性質(zhì)解決有關(guān)問題,而研究函數(shù)的性質(zhì),也離不開解不等式;
(3)數(shù)列的通項(xiàng)或前n項(xiàng)和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點(diǎn)處理數(shù)列問題十分重要;
(4)函數(shù)f(x)=(1+x)^n(n∈N*)與二項(xiàng)式定理是密切相關(guān)的,利用這個(gè)函數(shù)用賦值法和比較系數(shù)法可以解決很多二項(xiàng)式定理的問題;
(5)解析幾何中的許多問題,例如直線和二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關(guān)理論;
(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
高一函數(shù)課件(篇5)
一、說教材
(一)地位與重要性
函數(shù)的最值是《高中數(shù)學(xué)》一年級(jí)第一學(xué)期的內(nèi)容,是函數(shù)基本性質(zhì)的重要部分。在實(shí)際問題的解決過程中,建立了變量間的函數(shù)關(guān)系后,求最值培養(yǎng)了學(xué)生運(yùn)用基礎(chǔ)理論研究具體問題的能力,這也是學(xué)習(xí)數(shù)學(xué)的目的之一。函數(shù)最值的教學(xué)在培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想同時(shí)也可以使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)思維的學(xué)習(xí)習(xí)慣。函數(shù)的思想是一種重要的數(shù)學(xué)思想,它體現(xiàn)了運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的觀點(diǎn),本節(jié)課對(duì)初高中知識(shí)的銜接起到了承上啟下的作用。函數(shù)的最值問題與不等式、方程、參數(shù)范圍的探求及解析幾何等知識(shí)綜合在一起往往能編擬綜合性較強(qiáng)的新型題目,可以綜合考查學(xué)生應(yīng)用函數(shù)知識(shí)分析解決問題的能力,從而成為高考的高檔解答題,是高考測試的熱點(diǎn)之一。
(二)教學(xué)目標(biāo)
知識(shí)與能力目標(biāo):掌握求二次函數(shù)最值的常用方法——配方法,培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想和運(yùn)用基礎(chǔ)理論研究解決具體問題的能力。
情感目標(biāo):經(jīng)歷和體驗(yàn)數(shù)學(xué)活動(dòng)的過程以及數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的積極性,樹立學(xué)好數(shù)學(xué)的信心。
過程目標(biāo):通過課堂學(xué)習(xí)活動(dòng)培養(yǎng)學(xué)生相互間的合作交流,且在相互交流的過程中養(yǎng)成學(xué)生表述、抽象、總結(jié)的思維習(xí)慣,進(jìn)而獲得成功的體驗(yàn)。
科研目標(biāo):在教師指導(dǎo)下學(xué)生經(jīng)歷和體驗(yàn)探究過程的方法。
(三)教學(xué)重難點(diǎn)
重點(diǎn):配方法、數(shù)形結(jié)合求二次函數(shù)的最值。
難點(diǎn):二次函數(shù)在閉區(qū)間上的最值。
二、說教法與學(xué)法
在初中學(xué)生已經(jīng)學(xué)習(xí)過二次函數(shù)的知識(shí),根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,本節(jié)課主要采用探究式教學(xué)法和講練結(jié)合法進(jìn)行教學(xué)。教學(xué)過程也是一個(gè)學(xué)生主動(dòng)建構(gòu)的過程,教師不能無視學(xué)生已有的經(jīng)驗(yàn),企圖從外部將新知識(shí)強(qiáng)行裝入學(xué)生的頭腦,而是要把學(xué)生現(xiàn)有的知識(shí)經(jīng)驗(yàn)作為新知識(shí)的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”及發(fā)現(xiàn)新的知識(shí)經(jīng)驗(yàn)。在本堂課學(xué)習(xí)中,學(xué)生發(fā)揮主體作用,主動(dòng)地思考探究求解最值的最優(yōu)策略,并歸納出自己的解題方法,將知識(shí)主動(dòng)納入已建構(gòu)好的知識(shí)體系,真正做到“學(xué)會(huì)學(xué)習(xí)”。
三、說教學(xué)過程
(一)課題引入
環(huán)節(jié)
教學(xué)過程
設(shè)計(jì)說明
課題講解
例:動(dòng)物園要建造一面靠墻的2間面積相同的長方形熊貓居室,如果可供建造圍墻的材料長是30米,那么寬為多少米時(shí)才能使所建造的熊貓居室面積最大?熊貓居室的最大面積是多少平方米?
學(xué)生通過此例感受到在實(shí)際問題中需要解決函數(shù)的最值問題,從而引發(fā)學(xué)習(xí)本節(jié)內(nèi)容的興趣。
教學(xué)手段:用PPT展示題目
教師引導(dǎo)學(xué)生討論解答,并個(gè)別答疑、點(diǎn)撥,收集學(xué)生的解法,挑出若干答案在實(shí)物投影儀上進(jìn)行展示,并進(jìn)行點(diǎn)評(píng)。
學(xué)生的解法主要為函數(shù)最值法和利用基本不等式求最值,由學(xué)生評(píng)價(jià)兩種方法,為閉區(qū)間上二次函數(shù)的最值教學(xué)打下伏筆
教學(xué)手段:實(shí)物投影儀
(二)新知教學(xué)
環(huán)節(jié)
教學(xué)過程
設(shè)計(jì)說明
課題講解
一、函數(shù)最大值和最小值的概念
通過引例最值的求解,引導(dǎo)學(xué)生闡述函數(shù)最大值和最小值的概念。
學(xué)生口述師板書。
一般地,設(shè)函數(shù)在處的函數(shù)值是.如果對(duì)于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最小值,記作;如果對(duì)于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最大值記作。
二、例題講練
例1、求二次函數(shù)的最大值或者最小值:
師生共同完成一例,高一學(xué)生要養(yǎng)成規(guī)范的書寫格式和習(xí)慣,其余題目請(qǐng)學(xué)生板演。
學(xué)生根據(jù)已有的能力和經(jīng)驗(yàn),動(dòng)手得出答案,教師點(diǎn)評(píng)。提醒注意當(dāng)取何值時(shí),函數(shù)取到最值。
培養(yǎng)學(xué)生闡述、分析、理解概念的能力,引入最大值概念的過程是遵循由已知去認(rèn)識(shí)未知的認(rèn)識(shí)規(guī)律進(jìn)行設(shè)計(jì)的,現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。讓學(xué)生從求實(shí)際問題的最大值入手,由熟悉的二次函數(shù)圖象的頂點(diǎn)所具有的特點(diǎn)出發(fā),得到求二次函數(shù)最大值(最小值)的方法。
突出學(xué)生的主體地位,發(fā)揮教師的主導(dǎo)作用,培養(yǎng)思維的嚴(yán)謹(jǐn)性以及轉(zhuǎn)化能力,通過區(qū)間的變化讓學(xué)生充分感受到二次函數(shù)的最值的求解要討論對(duì)稱軸與所給區(qū)間的關(guān)系。
教學(xué)方式:講練結(jié)合
例2、在的條件下,求函數(shù)的最大值和最小值。
教師引導(dǎo)學(xué)生逐步深入思考:
1、定義域與函數(shù)最值是什么關(guān)系?
2、轉(zhuǎn)化后要研究的函數(shù)是什么?
教學(xué)方式:學(xué)生自主探究
高一函數(shù)課件(篇6)
一考綱要求。
1.利用計(jì)算工具,比較指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長等不同函數(shù)類型增長的含義。
2.搜集一些社會(huì)生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。
二.高考趨勢。
函數(shù)知識(shí)應(yīng)用十分廣泛,利用函數(shù)知識(shí)解應(yīng)用問題是數(shù)學(xué)應(yīng)用題的主要類型之一,也是高考考查的重點(diǎn)內(nèi)容。
三.要點(diǎn)回顧
解應(yīng)用題,首先應(yīng)通過審題,分析原型結(jié)構(gòu),深刻認(rèn)識(shí)問題的實(shí)際背景,確定主要矛盾,提出必要的假設(shè),將應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題求解;然后,經(jīng)過檢驗(yàn),求出應(yīng)用問題的解。其解題步驟如下:1.審題2.建模(列數(shù)學(xué)關(guān)系式)3.合理求解純數(shù)學(xué)問題。4.解釋并回答實(shí)際問題。
四.基礎(chǔ)訓(xùn)練。
1.在一定的范圍內(nèi),某種產(chǎn)品的購買量噸與單價(jià)元之間滿足一次函數(shù)關(guān)系,如果購買1000噸,每噸為800元,購買2000噸,每噸700元,那么客戶購買400噸,單價(jià)應(yīng)該是
2.根據(jù)市場調(diào)查,某商品在最近10天內(nèi)的價(jià)格與時(shí)間滿足關(guān)系銷售量與時(shí)間滿足關(guān)系則這種商品的日銷售額的值為.
3.某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向公司交元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元(9時(shí),一年的銷售量為萬件。則分公司一年的利潤L元與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式為.
4.有一批材料可以建成200的圍墻,如果用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個(gè)面積相等的矩形(如圖所示),則圍成矩形場地面積為(圍墻厚度不計(jì))。
5.某建筑商場國慶期間搞促銷活動(dòng),規(guī)定:顧客購物總金額不超過800元,不享受任何折扣,如果顧客購物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,按右表折扣分別累計(jì)計(jì)算。
可以享受折扣優(yōu)惠金額折扣率不超過500元的部分5%超過500元的部分10%某人在此商場購物總金額為元,可以獲得的折扣金額為元,則關(guān)于的解析式為;若元,則此人購物總金額為元。
6.在邊長為4的正方形ABCD的邊上有一點(diǎn)p沿著折線BCDA,由B點(diǎn)(起點(diǎn))向A點(diǎn)(終點(diǎn))移動(dòng),設(shè)p點(diǎn)移動(dòng)的路程為,的面積與點(diǎn)p移動(dòng)的路程間的函數(shù)關(guān)系式為
五.例題精講。
例1.某村計(jì)劃建造一個(gè)室內(nèi)面積為800的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1寬的通道,沿前側(cè)內(nèi)墻保留3寬的空地,當(dāng)矩形溫室的邊長各為多少時(shí),蔬菜的種植面積?種植面積是多少?
例2.某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出當(dāng)每輛車的月租金每增加50元時(shí),未租出車將增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元,兩者都由租賃公司支付。
1當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
2當(dāng)每輛車的月租金定為多少元時(shí),公司的月收益?月收益是多少?
例3.某城市現(xiàn)有人口100萬人,如果每年自然增長率為1.2﹪,試解答下面問題
1寫出城市人口總數(shù)(萬人)與年份(年)的函數(shù)關(guān)系式
2計(jì)算xx以后該城市人口總數(shù)(精確到0.1萬人)
3計(jì)算大約多少年以后該城市人口將達(dá)到120萬人(精確到1年)
六.鞏固練習(xí):.
1.鐵路機(jī)車運(yùn)行1小時(shí)所需的成本由兩部分組成:固定部分元,變動(dòng)部分(元)與運(yùn)行速度(千米/小時(shí))的平方成正比,比例系數(shù)為,如果機(jī)車勻速從甲站開往乙站,甲,乙兩站間的距離為500千米,則機(jī)車從甲站運(yùn)行到乙站的總成本與機(jī)車的速度之間的函數(shù)關(guān)系為
2.某公司有60萬元資金,計(jì)劃投資甲,乙兩個(gè)項(xiàng)目,按要求,對(duì)項(xiàng)目甲的投資不小于對(duì)項(xiàng)目乙投資的倍,且對(duì)每個(gè)項(xiàng)目的投資不少于5萬元,對(duì)項(xiàng)目甲投資1萬元可獲得0.4萬元的利潤,對(duì)項(xiàng)目乙投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃后,在這兩個(gè)項(xiàng)目上共可獲得的利潤為
3.將進(jìn)貨單價(jià)為80元的商品按90元一個(gè)出售時(shí),能賣出400個(gè),已知該商品每個(gè)上漲1元,其銷售量就減少20個(gè),為獲得利潤,售價(jià)應(yīng)定為
4.某地每年消耗木材約20萬立方米,沒立方米木料價(jià)格為240元,為了減少木材消耗,決定按木料價(jià)格的%征收木材稅,這樣每年木材消耗量減少萬立方米,為了既減少木材消耗又保證稅金收入每年不少于90萬元,則的取值范圍為
5.已知鐳經(jīng)過100年剩留原來質(zhì)量的95.76%,設(shè)質(zhì)量為1的鐳經(jīng)過年后的剩留質(zhì)量為,則與之間的函數(shù)關(guān)系為
6.某公司一年共購買某種貨物400噸,每次購買噸,運(yùn)費(fèi)為4萬元/噸,一年總儲(chǔ)存費(fèi)用4萬元,要使一年的總運(yùn)費(fèi)與總儲(chǔ)存費(fèi)用之和最小,則=
7.用總長為14.8的鋼條做一個(gè)長方體容器的框架,如果所做容器有一邊比另一邊長0.5,則它的容積為
8.某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價(jià)格(元/噸)之間的關(guān)系式為:,且生產(chǎn)噸的成本為(元),問該產(chǎn)品每月生產(chǎn)噸才能使利潤達(dá)到,利潤是萬元
9.有甲,乙兩種產(chǎn)品經(jīng)營銷售這兩種商品所獲得的利潤依次是和(萬元)它們與投入的資金(萬元)的關(guān)系,有經(jīng)驗(yàn)公式,。今有3萬元資金投入經(jīng)營甲、乙兩種商品,為了獲得利潤,對(duì)甲、乙兩種商品的資金投入分別應(yīng)是多少?最多能獲得多大的利潤?
高一函數(shù)課件(篇7)
同一只封建宗法制度的黑手,伸出了兩條繩索,捆住了婦女的脖子,朝著相反的方向緊勒,要把勞動(dòng)?jì)D女置于死地而后快。祥林嫂當(dāng)時(shí)就處在這種極端悲慘的境地中:
族權(quán)迫使她寡而再嫁,夫權(quán)又視此為奇恥大辱,使她忍辱含冤,永遠(yuǎn)生活在恥辱之中。祥林嫂以后的悲劇,都是由此而引起的。
那么,祥林嫂是如何對(duì)待新迫害的呢?
3.高潮:
①祥林嫂為什么又一次來到魯四老爺家?
②有人認(rèn)為,喪夫失子有偶然性,這種看法對(duì)不對(duì)?
喪夫失子似乎有偶然性,然而隱藏在偶然性背后的,是那起決定作用的必然性。祥林嫂的丈夫死于舊社會(huì)中蔓延著的傳染病傷寒,阿毛死于祥林嫂的貧困、勞碌。(若不是忙著打柴摘茶養(yǎng)蠶,能讓年僅兩三歲的孩子去剝豆嗎?)因此,實(shí)質(zhì)上,是罪惡的政權(quán)奪走了祥林嫂的丈夫和兒子的生命,使她陷于嫁而再寡的境地。作者開始把批判的筆觸由封建夫權(quán)、族權(quán)擴(kuò)展到封建政權(quán)。
按照封建宗法觀念,婦女出嫁從夫,夫死從子,一旦喪夫失子,則連在家庭中生存的權(quán)利都被剝奪了。因此,大伯來收屋使祥林嫂走投無路,只好再一次來到魯家。她到魯家后,又遭受了更大的打擊。
③在魯四老爺,人們對(duì)待祥林嫂這個(gè)嫁而再寡的不幸女人態(tài)度如何?
A.魯四老爺?shù)膽B(tài)度:
魯四老爺站在頑固維護(hù)封建宗法制度的立場上,從精神上殘酷地虐殺她。他暗暗地告誡四嬸的那段話,就是置祥林嫂于死地而又不露一絲血痕的軟刀子。(通過四嬸先后喊出三句你放著罷,殺人不見血地葬送了祥林嫂的性命。)
B.人們的態(tài)度:
人們叫她的聲調(diào)和先前很不同。
魯迅用他那犀利的筆鋒,從廣闊的領(lǐng)域里揭示了封建社會(huì)黑暗的程度。
人們對(duì)祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時(shí)地向人們?cè)V說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。
C.柳媽說鬼:
④祥林嫂是如何對(duì)待這如此沉重的打擊的?其結(jié)果如何?
為了爭得做人的權(quán)利,為了求得一線生存的希望,她在竭盡全力地反抗著:
她背著沉重的精神包袱,整日勞碌著,以便積夠十二元鷹洋,用捐門檻的方法去擺脫人們?cè)陉柺馈㈥幨篱g給她設(shè)下的罪名,她忍受著咬嚙人心的嘲笑和侮辱,在無邊的寂寞和悲哀中,默默干了一年,這是何等堅(jiān)韌的反抗精神?。?/p>
而反抗的結(jié)果,出乎柳媽、祥林嫂的預(yù)想,這血淋淋的事實(shí)深刻地說明了:祥林嫂是無法贖罪的,祥林嫂陷入了求生不得,欲死不能的境地。
4.結(jié)局:
當(dāng)祥林嫂被折磨得像木偶人,喪失了當(dāng)牛做馬的條件后,魯四老爺就一腳把她踢出門外,使她終于成了只有那眼珠間或一輪,還可以表示她是一個(gè)活物的僵尸。即使這樣,她在臨死前,還向我提出了三個(gè)問題:
A.一個(gè)人死了之后,究竟有沒有魂靈的?
B.那么,也就有地獄了?
C.那么,死掉的一家的人,都能見面的?
這是對(duì)魂靈的有無表示疑惑。
她希望人死后有靈魂,因?yàn)樗肟匆娮约旱膬鹤?;她害怕人死后有靈魂,因?yàn)樗ε略陉庨g被鋸成兩半。這種疑惑是她對(duì)自己命運(yùn)的疑惑,但也正是這種疑惑,這種無法解脫的矛盾,使她在臨死前受到了極大的精神折磨,最后,悲慘地死去。
從祥林嫂一生的悲慘遭遇中,可以清楚地看到,封建的宗法制度正是用政權(quán)、族權(quán)、神權(quán)、夫權(quán)這四條繩索把祥林嫂活活地勒死的。
祥林嫂一生的悲慘遭遇,正是舊中國千百萬勞動(dòng)?jì)D女悲慘遭遇的真實(shí)寫照。作者正是通過塑造祥林嫂這一典型人物,對(duì)吃人的封建制度和封建禮教進(jìn)行深刻的揭露和有力地抨擊的。
小結(jié):
祥林嫂是生活在舊中國的一個(gè)被踐踏、被愚弄、被迫害、被鄙視的勤勞、善良、質(zhì)樸、頑強(qiáng)的勞動(dòng)?jì)D女的典型形象。
總之,祥林嫂的悲劇是一個(gè)社會(huì)悲劇,造成這一悲劇的根源是封建禮教對(duì)中國勞動(dòng)?jì)D女的摧殘和封建思想對(duì)當(dāng)時(shí)中國社會(huì)的根深蒂固的統(tǒng)治。
第三課時(shí)
本課時(shí)重點(diǎn)分析魯四老爺、我和柳媽的形象。
一、檢查作業(yè):
二、分析魯四老爺:
魯四老爺是當(dāng)時(shí)農(nóng)村中地主階級(jí)的代表人物,是資產(chǎn)階級(jí)民主革命時(shí)期地主階級(jí)知識(shí)分子的典型形象。他政治上迂腐、保守,頑固地維護(hù)舊有的封建制度,反對(duì)一切改革與革命。他思想上反動(dòng),尊崇理學(xué)和孔孟之道。自覺維護(hù)封建制度和封建禮教。他是造成祥林嫂悲劇的一個(gè)重要人物。
1.作者是通過什么手法來刻畫這個(gè)人物的呢?
①間接描寫:
通過魯四老爺?shù)臅筷愒O(shè)的描寫,點(diǎn)明了魯四老爺?shù)纳矸郑ǖ刂麟A級(jí)、封建理學(xué)的衛(wèi)道士),揭露了他的丑惡本質(zhì),從而揭示出他成為殺害祥林嫂的劊子手的深刻的階級(jí)根源和思想根源。
②直接描寫:
A.行動(dòng)描寫:
這表現(xiàn)在祥林嫂被搶走的兩件事上:
當(dāng)婆婆一邊搶人一邊來領(lǐng)工錢時(shí),魯四老爺把祥林嫂一文還沒有的工錢全交給了婆婆。
與此相對(duì)照的是對(duì)被壓迫的寡婦祥林嫂的冷酷無情。
祥林嫂曾那樣辛勤地為魯家勞動(dòng)過,可當(dāng)她遭到惡運(yùn)時(shí),魯家卻無動(dòng)于衷,連祥林嫂走沒走、怎么走的,都毫不過問,只是到了正午,四嬸肚子餓了,這才想起了祥林嫂淘米時(shí)拿走米和淘籮,于是傾巢出動(dòng)分頭尋淘籮;連平時(shí)擺派頭、端架子的魯四老爺都踱出門外,直到河邊,等看見米和淘籮平平正正的放在岸上,旁邊還有一株菜時(shí),這才放心。這場虛驚,入木三分地揭露了:在封建統(tǒng)治者的眼里,一個(gè)勞動(dòng)?jì)D女的命運(yùn)都不如一個(gè)淘籮、一點(diǎn)米、一株菜,魯四老爺冷酷殘忍的嘴臉躍然紙上。
B.語言描寫:
在祥林嫂的問題上,魯四老爺一共開過六次口,說了百十來個(gè)字,卻就把他反動(dòng)、頑固、虛偽自私、陰險(xiǎn)狠毒的性格特征,把他殺害祥林嫂的罪行,揭露得淋漓盡致。
a.祥林嫂被搶前:
b.祥林嫂被搶時(shí):
c.當(dāng)他為尋淘籮,踱到河邊時(shí):
d.緊接著,午飯之后,衛(wèi)婆子又來時(shí):
e.對(duì)四嬸的暗暗告誡:
f.祥林嫂死后:
作為這六次開口背景的是魯四老爺虛偽寒暄后的大罵其新黨,它恰恰深刻地揭示了那六次開口的根源。
三、分析我這一形象:
小說中的我是一個(gè)具有進(jìn)步思想的小資產(chǎn)階級(jí)知識(shí)分子的形象。我有反封建的思想傾向,憎惡魯四老爺,同情祥林嫂。對(duì)祥林嫂提出的魂靈的有無的問題,之所以作了含糊的回答,有其善良的一面;同時(shí)也反映了我的軟弱和無能。
在小說的結(jié)構(gòu)上,我又起著線索的作用。祥林嫂一生的悲慘遭遇都是通過我的所見所聞來展現(xiàn)的。我是事件的見證人。
四、分析柳媽:
問:有人認(rèn)為柳媽是幫助魯四老爺殺害祥林嫂的兇手。你是怎樣來看待這一問題呢?
明確:柳媽和祥林嫂一樣都是舊社會(huì)的受害者。雖然她臉上已經(jīng)打皺,眼睛已經(jīng)干枯,可是在年節(jié)時(shí)還要給地主去幫工,可見,她也是一個(gè)受壓迫的勞動(dòng)?jì)D女。但是,由于她受封建迷信思想和封建禮教的毒害很深,相信天堂、地獄之類邪說和餓死事小,失節(jié)事大的理學(xué)信條,所以她對(duì)祥林嫂改嫁時(shí)頭上留下的傷疤,采取奚落的態(tài)度。至于她講陰司故事給祥林嫂聽,也完全出于善意,主觀愿望還是想為祥林嫂尋求贖罪的辦法,救她跳出苦海,并非要置祥林嫂于死地,只是結(jié)果適得其反。
她的主觀愿望和客觀效果的矛盾說明柳媽是以剝削階級(jí)統(tǒng)治人民的思想──封建禮教和封建迷信思想為指導(dǎo),來尋求解救祥林嫂的藥方的,這不但不會(huì)產(chǎn)生療效的效果,反而給自己的姐妹造成了難以支持的精神重壓,把祥林嫂推向更恐怖的深淵之中。
高一函數(shù)課件(篇8)
教學(xué)目的:
1.訓(xùn)練按一定目的從課文中篩選信息的能力。
2.理解辯證立論,重點(diǎn)突出,廣征博引,逐層深人的寫法。
3.認(rèn)識(shí)治學(xué)中占有材料與鉆研理論的關(guān)系;樹立實(shí)踐第一的辯證唯物主義觀點(diǎn)。
教學(xué)設(shè)想:
1.解讀,關(guān)鍵要抓住“虛”與“實(shí)”的關(guān)系,理清課文的脈絡(luò),重點(diǎn)認(rèn)識(shí)圍繞基本觀點(diǎn)立論辯證,廣征博引、層層深人的論述特點(diǎn),理清文章觀點(diǎn)與材料之間的關(guān)系,把握課文的重點(diǎn)。
2.安排二課時(shí)。
教學(xué)過程及步驟:
一、開場白:
1980年10月22日,中國語言學(xué)會(huì)成立。呂叔湘先了題為《把我國語言科學(xué)推向前進(jìn)》的講話。全文分“中和外的關(guān)系”、“虛和實(shí)的關(guān)系”、“動(dòng)和靜的關(guān)系”、“通和專的關(guān)系”四個(gè)部分,分別論述了語言研究工作中需要處理好的四對(duì)關(guān)系。是其中的第二部分。題目是選作教材時(shí)編者加的。文章雖然“主要談漢語研究”,但正如作者所言“在不同程度上也適用于其他方面”,對(duì)于一般治學(xué)和研究問題,對(duì)于中職學(xué)生的學(xué)習(xí),包括.寫作時(shí)處理好選材與立意的關(guān)系,都具有重要的指導(dǎo)意義。
二、作者簡介:
呂叔湘(1904—1998),江蘇丹陽人。當(dāng)代著名語言學(xué)家、語文教育家,先后擔(dān)任中國社會(huì)科學(xué)院語言研究所研究員、所長,兼任《中國語文》雜志主編,全國文字改革研究會(huì)主席,中國語言學(xué)會(huì)會(huì)長,語文出版社社長,并擔(dān)任全國政協(xié)第二、三屆委員,全國人大第三、四、五、六屆代表,五屆常委,法制委員會(huì)委員。他于1926年畢業(yè)于國立東南大學(xué),曾任過中學(xué)教員。1936年留學(xué)英國,1938年回國。先后任云南大學(xué)文史系副教授、華西協(xié)和大學(xué)中國文化研究所研究員、金陵大學(xué)文化研究所研究員兼中央大學(xué)中文系教授、開明書店編輯。建國后任清華大學(xué)中文系教授,1952年到中國社會(huì)科學(xué)院語言研究所工作。他幾十年來一直從事語文教學(xué)和研究,重點(diǎn)研究漢語語法,對(duì)我國語言學(xué)的發(fā)展作出了重要貢獻(xiàn)。主要著作有《中國文法要略》、《語法修辭講話》、《現(xiàn)代漢語八百詞》等。他治學(xué)嚴(yán)謹(jǐn),著述材料豐富,引證充分,闡述詳盡,見解精辟。他還寫有許多普及性語文讀物,通俗實(shí)用,生動(dòng)有趣。
三、分析課文:
全文共11段,可分為三個(gè)部分。
第一部分(第1~2段):系全文的總綱,提出論題并表明了觀點(diǎn):理論從事例中來,事例從觀察中來、從實(shí)驗(yàn)中來。文章首句提出論題,緊接著以兩個(gè)設(shè)問表明了觀點(diǎn)。在接下來的闡述中,作者以語言學(xué)研究為例說明了理論來自于事例,事例來自于觀察和實(shí)驗(yàn)的道理。文章的第2段運(yùn)用古人做學(xué)問、國外各種學(xué)派林立和“禪宗和尚”的例子闡述對(duì)前人的理論也要靠觀察來驗(yàn)證的道理。在論述中,作者既承認(rèn)“前人的理論是我們的財(cái)富”,又指出“前人的理論無論多么重要”,都“要用自己的觀察來驗(yàn)證”;既肯定了講“家法”的好處,又指出其缺點(diǎn),全面辯證,客觀公允,令人信服。這一段是對(duì)第1段的進(jìn)一步強(qiáng)調(diào)和補(bǔ)充。
第二部分(第3~6段):具體闡述理論和事實(shí)的辯證關(guān)系并指出了具體的處理方法。第3段從事實(shí)對(duì)理論的作用角度舉出“反切”、“等韻”和“文字學(xué)”等理論的形成作為例證,指出事實(shí)能夠決定理論。第4段從比較理論和事實(shí)輕重的角度,運(yùn)用達(dá)爾文物種起源理論的形成和明朝兩位理學(xué)家的故事作為論據(jù),指出沒有事實(shí)作基礎(chǔ),理論就靠不住,更加突出了事實(shí)對(duì)理論的決定性作用。第5段是從理論對(duì)事實(shí)的作用角度,肯定了理論能引導(dǎo)人去發(fā)現(xiàn)事實(shí)的作用。運(yùn)用了門捷列夫元素周期表填寫等例子。第6段具體提出處理二者關(guān)系的方法,特別強(qiáng)調(diào)“不可走極端”。這一部分的論述強(qiáng)調(diào)了事實(shí)對(duì)理論的決定性作用,其目的在于糾正現(xiàn)實(shí)中存在的重理論輕事實(shí)的認(rèn)識(shí)??少F的是作者“矯枉”而不“過正”,沒有偏執(zhí)一端,沒有抹殺理論在治學(xué)中的作用,而是在輕重有別、詳略有致、突出重點(diǎn)的同時(shí),兼顧到了事物的各個(gè)方面,從而顯得全面周到,辯證科學(xué)。作者對(duì)問題認(rèn)識(shí)的深刻性和完整性由此可見一斑。
第三部分(第7~11段):著重論述觀察和實(shí)驗(yàn)方面的有關(guān)問題。文章聯(lián)系實(shí)際,在分析重理論輕事例的原因、指出其危害的同時(shí),闡述了觀察和實(shí)驗(yàn)必須具備的精神和態(tài)度,強(qiáng)調(diào)要親自去觀察、實(shí)驗(yàn),收集事例。第7段對(duì)重理論輕事例的錯(cuò)誤傾向提出批評(píng),引用了饒?jiān)L┙淌诘脑捵鳛檎摀?jù),切合實(shí)際,富于針對(duì)性。第8段運(yùn)用“有限與無眼”的故事和葉斯丕森的例子闡述觀察、實(shí)驗(yàn)“不容易”的一個(gè)原因,指出觀察、實(shí)驗(yàn)不能懶惰,必須具備換而不舍的精神。第9段闡述了觀察、實(shí)驗(yàn)“不容易”的另一個(gè)原因,指出觀察、實(shí)驗(yàn)不能有成見,必須有客觀的態(tài)度。第10段收束上文,進(jìn)一步指出不愿觀察實(shí)驗(yàn)的害處。第11段指出觀察、實(shí)驗(yàn)必須自己去做,徹底堵住了不愿觀察、實(shí)驗(yàn)者的退路。這一部分是第二部分論述的具體化和深化。
四、.總結(jié)全文:
文章緊緊圍繞治學(xué)過程中“虛與實(shí)”也就是理論和事例的關(guān)系問題,運(yùn)用大量典型、生動(dòng)的事實(shí)和理論材料,進(jìn)行了全面透徹的論述。明確提出理論從事例中來,事例則從觀察和實(shí)驗(yàn)中來的觀點(diǎn)。文章針對(duì)重理論輕事例的現(xiàn)實(shí),在辯證立論、全面論述的基礎(chǔ)上,強(qiáng)調(diào)突出了觀察、實(shí)驗(yàn)對(duì)理論形成的作用這一重點(diǎn)。全文第一部分提出兩者關(guān)系的問題,表明觀點(diǎn);第二部分緊緊圍繞觀點(diǎn),對(duì)兩者關(guān)系展開論述;第三部分在論述兩者關(guān)系的基礎(chǔ)上,進(jìn)一步闡述觀察和實(shí)驗(yàn)的有關(guān)問題,從整體到局部,逐步剖析,層層深人,不斷具體、深化,具有嚴(yán)密的邏輯性和較強(qiáng)的說服力。
高一函數(shù)課件(篇9)
初中數(shù)學(xué)知識(shí)少、淺、難度容易、知識(shí)面笮。高中數(shù)學(xué)知識(shí)廣泛,將對(duì)初中的數(shù)學(xué)知識(shí)推廣和引伸,也是對(duì)初中數(shù)學(xué)知識(shí)的完善。如:初中學(xué)習(xí)的角的概念只是“0—1800”范圍內(nèi)的,但實(shí)際當(dāng)中也有7200和“—300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》,將在三維空間中求一些幾何實(shí)體的體積和表面積;還將學(xué)習(xí)“排列組合”知識(shí),以便解決排隊(duì)方法種數(shù)等問題。如:①三個(gè)人排成一行,有幾種排隊(duì)方法,( =6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學(xué)習(xí)統(tǒng)計(jì)這些排列的數(shù)學(xué)方法。初中中對(duì)一個(gè)負(fù)數(shù)開平方無意義,但在高中規(guī)定了i2=-1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識(shí)同學(xué)們?cè)谝院蟮膶W(xué)習(xí)中將逐漸學(xué)習(xí)到。
(1)初中課堂教學(xué)量小、知識(shí)簡單,通過教師課堂教慢的速度,爭取讓全面同學(xué)理解知識(shí)點(diǎn)和解題方法,課后老師布置作業(yè),然后通過大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對(duì)知識(shí)的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開設(shè)多(有九們課學(xué)生同時(shí)學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時(shí)間三節(jié)課,這樣各科學(xué)習(xí)時(shí)間將大大減少,而教師布置課外題量相對(duì)初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時(shí)間相對(duì)比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個(gè)學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識(shí)讓每個(gè)學(xué)生掌握后再進(jìn)行新課。
初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識(shí)面廣,知識(shí)要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會(huì)貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會(huì)使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開發(fā)在不斷的多樣化,近年來提出了應(yīng)用型題、探索型題和開放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。
其實(shí),自學(xué)能力的提高也是一個(gè)人生活的需要,他從一個(gè)方面也代表了一個(gè)人的素養(yǎng),人的一生只有18---24年時(shí)間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。
初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識(shí)的難度大和知識(shí)面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績也只能是一般程度。現(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來了不利的思維定勢,對(duì)高中學(xué)生帶來了保守的、僵化的思想,封閉了學(xué)生的豐富反對(duì)創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時(shí)要不就錯(cuò)、要不就答不全面。大多數(shù)學(xué)生不會(huì)分類討論。
初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問題時(shí),大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會(huì)大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時(shí)我們采用對(duì)方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時(shí)的所有根的情形,使學(xué)生很快的掌握了對(duì)所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會(huì)通過對(duì)變量的分析,探索出分析、解決問題的思路和解題所用的數(shù)學(xué)思想。
初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識(shí)的范圍小,知識(shí)層次低,知識(shí)面笮,對(duì)實(shí)際問題的思維受到了局限,就幾何來說,我們都接觸的是現(xiàn)實(shí)生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對(duì)三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實(shí)數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識(shí)的多元化和廣泛性,將會(huì)使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。
高一函數(shù)課件(篇10)
高一數(shù)學(xué)教案:《函數(shù)的應(yīng)用舉例》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1.能夠運(yùn)用函數(shù)的性質(zhì),指數(shù)函數(shù),對(duì)數(shù)函數(shù)的性質(zhì)解決某些簡單的實(shí)際問題.
(1)能通過閱讀理解讀懂題目中文字?jǐn)⑹鏊从车膶?shí)際背景,領(lǐng)悟其中的數(shù)學(xué)本,弄清題中出現(xiàn)的量及其數(shù)學(xué)含義.
(2)能根據(jù)實(shí)際問題的具體背景,進(jìn)行數(shù)學(xué)化設(shè)計(jì),將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,并調(diào)動(dòng)函數(shù)的相關(guān)性質(zhì)解決問題.
(3)能處理有關(guān)幾何問題,增長率的問題,和物理方面的實(shí)際問題.
2.通過聯(lián)系實(shí)際的引入問題和解決帶有實(shí)際意義的某些問題,培養(yǎng)學(xué)生分析問題,解決問題的能力和運(yùn)用數(shù)學(xué)的意識(shí),也體現(xiàn)了函數(shù)知識(shí)的應(yīng)用價(jià)值,也滲透了訓(xùn)練的價(jià)值.
3.通過對(duì)實(shí)際問題的研究解決,滲透了數(shù)學(xué)建模的思想.提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生對(duì)函數(shù)思想等有了進(jìn)一步的了解.
教學(xué)建議
教材分析
(1)本小節(jié)內(nèi)容是全章知識(shí)的綜合應(yīng)用.這一節(jié)的出現(xiàn)體現(xiàn)了強(qiáng)化應(yīng)用意識(shí)的要求,讓學(xué)生能把數(shù)學(xué)知識(shí)應(yīng)用到生產(chǎn),生活的實(shí)際中去,形成應(yīng)用數(shù)學(xué)的意識(shí).所以培養(yǎng)學(xué)生分析解決問題的能力和運(yùn)用數(shù)學(xué)的意識(shí)是本小節(jié)的重點(diǎn),根據(jù)實(shí)際問題建立數(shù)學(xué)模型是本小節(jié)的難點(diǎn).
(2)在解決實(shí)際問題過程中常用到函數(shù)的知識(shí)有:函數(shù)的概念,函數(shù)解析式的確定,指數(shù)函數(shù)的概念及其性質(zhì),對(duì)數(shù)概念及其性質(zhì),和二次函數(shù)的概念和性質(zhì).在方法上涉及到換元法,配方法,方程的思想,數(shù)形結(jié)合等重要的思方法..事業(yè)本節(jié)的學(xué)習(xí),既是對(duì)知識(shí)的復(fù)習(xí),也是對(duì)方法和思想的再認(rèn)識(shí).
教法建議
(1)本節(jié)中處理的均為應(yīng)用問題,在題目的敘述表達(dá)上均較長,其中要分析把握的信息量較多.事業(yè)處理這種大信息量的閱讀題首先要在閱讀上下功夫,找出關(guān)鍵語言,關(guān)鍵數(shù)據(jù),特別是對(duì)實(shí)際問題中數(shù)學(xué)變量的隱含限制條件的提取尤為重要.
(2)對(duì)于應(yīng)用問題的處理,第二步應(yīng)根據(jù)各個(gè)量的關(guān)系,進(jìn)行數(shù)學(xué)化設(shè)計(jì)建立目標(biāo)函數(shù),將實(shí)際問題通過分析概括,抽象為數(shù)學(xué)問題,最后是用數(shù)學(xué)方法將其化為常規(guī)的函數(shù)問題(或其它數(shù)學(xué)問題)解決.此類題目一般都是分為這樣三步進(jìn)行.
(3)在現(xiàn)階段能處理的應(yīng)用問題一般多為幾何問題,利潤最大,費(fèi)用最省問題,增長率的問題及物理方面的問題.在選題時(shí)應(yīng)以以上幾方面問題為主.
教學(xué)設(shè)計(jì)示例
函數(shù)初步應(yīng)用
教學(xué)目標(biāo)
1.能夠運(yùn)用常見函數(shù)的性質(zhì)及平面幾何有關(guān)知識(shí)解決某些簡單的實(shí)際問題.
2.通過對(duì)實(shí)際問題的研究,培養(yǎng)學(xué)生分析問題,解決問題的能力
3.通過把實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化,滲透數(shù)學(xué)建模的思想,提高學(xué)生用數(shù)學(xué)的意識(shí),及學(xué)習(xí)數(shù)學(xué)的興趣.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是應(yīng)用問題的閱讀分析和解決.
難點(diǎn)是根據(jù)實(shí)際問題建立相應(yīng)的數(shù)學(xué)模型
教學(xué)方法
師生互動(dòng)式
教學(xué)用具
投影儀
教學(xué)過程
一.提出問題
讓學(xué)生明確是分段函數(shù)的前提條件下,求出定義域?yàn)椋?板書)
問題解決后可由教師簡單小結(jié)一下研究過程中的主要步驟(1)閱讀理解;(2)建立目標(biāo)函數(shù);(3)按要求解決數(shù)學(xué)問題.
下面我們一起看第二個(gè)問題
問題二:某工廠制定了從1999年底開始到20xx年底期間的生產(chǎn)總值持續(xù)增長的兩個(gè)三年計(jì)劃,預(yù)計(jì)生產(chǎn)總值年平均增長率為,則第二個(gè)三年計(jì)劃生產(chǎn)總值與第一個(gè)三年計(jì)劃生
相關(guān)閱讀
高一數(shù)學(xué)應(yīng)用舉例0331.2解三角形應(yīng)用舉例第三課時(shí)
一、教學(xué)目標(biāo)
1、能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)計(jì)算角度的實(shí)際問題
2、通過綜合訓(xùn)練強(qiáng)化學(xué)生的相應(yīng)能力,讓學(xué)生有效、積極、主動(dòng)地參與到探究問題的過程中來,逐步讓學(xué)生自主發(fā)現(xiàn)規(guī)律,舉一反三。
3、培養(yǎng)學(xué)生提出問題、正確分析問題、獨(dú)立解決問題的能力,并激發(fā)學(xué)生的探索精神。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):能根據(jù)正弦定理、余弦定理的特點(diǎn)找到已知條件和所求角的關(guān)系
難點(diǎn):靈活運(yùn)用正弦定理和余弦定理解關(guān)于角度的問題
三、教學(xué)過程
Ⅰ.課題導(dǎo)入
[創(chuàng)設(shè)情境]
提問:前面我們學(xué)習(xí)了如何測量距離和高度,這些實(shí)際上都可轉(zhuǎn)化已知三角形的一些邊和角求其余邊的問題。然而在實(shí)際的航海生活中,人們又會(huì)遇到新的問題,在浩瀚無垠的海面上如何確保輪船不迷失方向,保持一定的航速和航向呢?今天我們接著探討這方面的測量問題。
Ⅱ.講授新課
[范例講解]
例1、如圖,一艘海輪從A出發(fā),沿北偏東75的方向航行67.5nmile后到達(dá)海島B,然后從B出發(fā),沿北偏東32的方向航行54.0nmile后達(dá)到海島C.如果下次航行直接從A出發(fā)到達(dá)C,此船應(yīng)該沿怎樣的方向航行,需要航行多少距離?(角度精確到0.1,距離精確到0.01nmile)
學(xué)生看圖思考并講述解題思路
分析:首先根據(jù)三角形的內(nèi)角和定理求出AC邊所對(duì)的角ABC,即可用余弦定理算出AC邊,再根據(jù)正弦定理算出AC邊和AB邊的夾角CAB。
解:在ABC中,ABC=180-75+32=137,根據(jù)余弦定理,
AC==≈113.15
根據(jù)正弦定理,=sinCAB==≈0.3255,
所以CAB=19.0,75-CAB=56.0
答:此船應(yīng)該沿北偏東56.1的方向航行,需要航行113.15nmile
例2、在某點(diǎn)B處測得建筑物AE的頂端A的仰角為,沿BE方向前進(jìn)30m,至點(diǎn)C處測得頂端A的仰角為2,再繼續(xù)前進(jìn)10m至D點(diǎn),測得頂端A的仰角為4,求的大小和建筑物AE的高。
解法一:(用正弦定理求解)由已知可得在ACD中,
AC=BC=30,AD=DC=10,ADC=180-4,
=。因?yàn)閟in4=2sin2cos2
cos2=,得2=30=15,在RtADE中,AE=ADsin60=15
答:所求角為15,建筑物高度為15m
解法二:(設(shè)方程來求解)設(shè)DE=x,AE=h
在RtACE中,(10+x)+h=30在RtADE中,x+h=(10)
兩式相減,得x=5,h=15在RtACE中,tan2==
2=30,=15
答:所求角為15,建筑物高度為15m
解法三:(用倍角公式求解)設(shè)建筑物高為AE=8,由題意,得
BAC=,CAD=2,AC=BC=30m,AD=CD=10m
在RtACE中,sin2=------①在RtADE中,sin4=,----②
②①得cos2=,2=30,=15,AE=ADsin60=15
答:所求角為15,建筑物高度為15m
例3、某巡邏艇在A處發(fā)現(xiàn)北偏東45相距9海里的C處有一艘走私船,正沿南偏東75的方向以10海里/小時(shí)的速度向我海岸行駛,巡邏艇立即以14海里/小時(shí)的速度沿著直線方向追去,問巡邏艇應(yīng)該沿什么方向去追?需要多少時(shí)間才追趕上該走私船?
師:你能根據(jù)題意畫出方位圖?教師啟發(fā)學(xué)生做圖建立數(shù)學(xué)模型
分析:這道題的關(guān)鍵是計(jì)算出三角形的各邊,即需要引入時(shí)間這個(gè)參變量。
解:如圖,設(shè)該巡邏艇沿AB方向經(jīng)過x小時(shí)后在B處追上走私船,則CB=10x,AB=14x,AC=9,
ACB=+=
(14x)=9+(10x)-2910xcos
化簡得32x-30x-27=0,即x=,或x=-(舍去)
所以BC=10x=15,AB=14x=21,
又因?yàn)閟inBAC===
BAC=38,或BAC=141(鈍角不合題意,舍去),
38+=83
答:巡邏艇應(yīng)該沿北偏東83方向去追,經(jīng)過1.4小時(shí)才追趕上該走私船.
評(píng)注:在求解三角形中,我們可以根據(jù)正弦函數(shù)的定義得到兩個(gè)解,但作為有關(guān)現(xiàn)實(shí)生活的應(yīng)用題,必須檢驗(yàn)上述所求的解是否符合實(shí)際意義,從而得出實(shí)際問題的解
Ⅲ.課堂練習(xí)
課本第16頁練習(xí)
Ⅳ.課時(shí)小結(jié)
解三角形的應(yīng)用題時(shí),通常會(huì)遇到兩種情況:
(1)已知量與未知量全部集中在一個(gè)三角形中,依次利用正弦定理或余弦定理解之。
(2)已知量與未知量涉及兩個(gè)或幾個(gè)三角形,這時(shí)需要選擇條件足夠的三角形優(yōu)先研究,再逐步在其余的三角形中求出問題的解。
Ⅴ.課后作業(yè)
《習(xí)案》作業(yè)六
高一函數(shù)課件(篇11)
1、函數(shù):設(shè)A、B為非空集合,如果按照某個(gè)特定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對(duì)應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。
2、函數(shù)定義域的解題思路:
⑴ 若x處于分母位置,則分母x不能為0。
⑵ 偶次方根的被開方數(shù)不小于0。
⑶ 對(duì)數(shù)式的真數(shù)必須大于0。
⑷ 指數(shù)對(duì)數(shù)式的底,不得為1,且必須大于0。
⑸ 指數(shù)為0時(shí),底數(shù)不得為0。
⑹ 如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的,那么,它的定義域是各個(gè)部分都有意義的x值組成的集合。
⑺ 實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義。
⑴ 觀察法:適用于初等函數(shù)及一些簡單的由初等函數(shù)通過四則運(yùn)算得到的函數(shù)。
⑵ 圖像法:適用于易于畫出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。
⑶ 配方法:主要用于二次函數(shù),配方成 y=(x-a)2+b 的形式。
⑷ 代換法:主要用于由已知值域的函數(shù)推測未知函數(shù)的值域。
⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。
6、映射:設(shè)A、B是兩個(gè)非空集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從集合A到集合B的映射。
⑴ 集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè)。
⑶ 不要求集合B中的每一個(gè)元素在集合A中都有原象。
⑴ 在定義域的不同部分上有不同的解析式表達(dá)式。
⑵ 各部分自變量和函數(shù)值的取值范圍不同。
⑶ 分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集。
8、復(fù)合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復(fù)合函數(shù)。
高一函數(shù)課件(篇12)
1.2解三角形應(yīng)用舉例第二課時(shí)
一、教學(xué)目標(biāo)
1、能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)底部不可到達(dá)的物體高度測量的問題
2、鞏固深化解三角形實(shí)際問題的一般方法,養(yǎng)成良好的研究、探索習(xí)慣。
3、進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的意識(shí)及觀察、歸納、類比、概括的能力
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):結(jié)合實(shí)際測量工具,解決生活中的測量高度問題
難點(diǎn):能觀察較復(fù)雜的圖形,從中找到解決問題的關(guān)鍵條件
三、教學(xué)過程
Ⅰ.課題導(dǎo)入
提問:現(xiàn)實(shí)生活中,人們是怎樣測量底部不可到達(dá)的建筑物高度呢?又怎樣在水平飛行的飛機(jī)上測量飛機(jī)下方山頂?shù)暮0胃叨饶??今天我們就來共同探討這方面的問題
Ⅱ.講授新課
[范例講解]
例1、AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測量建筑物高度AB的方法。
分析:求AB長的關(guān)鍵是先求AE,在ACE中,如能求出C點(diǎn)到建筑物頂部A的距離CA,再測出由C點(diǎn)觀察A的仰角,就可以計(jì)算出AE的長。
解:選擇一條水平基線HG,使H、G、B三點(diǎn)在同一條直線上。由在H、G兩點(diǎn)用測角儀器測得A的仰角分別是、,CD=a,測角儀器的高是h,那么,在ACD中,根據(jù)正弦定理可得
AC=AB=AE+h=AC+h=+h
例2、如圖,在山頂鐵塔上B處測得地面上一點(diǎn)A的俯角=54,在塔底C處測得A處的俯角=50。已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m)
師:根據(jù)已知條件,大家能設(shè)計(jì)出解題方案嗎?
若在ABD中求CD,則關(guān)鍵需要求出哪條邊呢?
生:需求出BD邊。
師:那如何求BD邊呢?
生:可首先求出AB邊,再根據(jù)BAD=求得。
解:在ABC中,BCA=90+,ABC=90-,
BAC=-,BAD=.根據(jù)正弦定理,=
所以AB==在RtABD中,得BD=ABsinBAD=
將測量數(shù)據(jù)代入上式,得BD==≈177(m)
CD=BD-BC≈177-27.3=150(m)
答:山的高度約為150米.
思考:有沒有別的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?
例3、如圖,一輛汽車在一條水平的公路上向正東行駛,到A處時(shí)測得公路南側(cè)遠(yuǎn)處一山頂D在東偏南15的方向上,行駛5km后到達(dá)B處,測得此山頂在東偏南25的方向上,仰角為8,求此山的高度CD.
思考1:欲求出CD,大家思考在哪個(gè)三角形中研究比較適合呢?(在BCD中)
思考2:在BCD中,已知BD或BC都可求出CD,根據(jù)條件,易計(jì)算出哪條邊的長?(BC邊)
解:在ABC中,A=15,C=25-15=10,根據(jù)正弦定理,
=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)
答:山的高度約為1047米
Ⅲ.課堂練習(xí):課本第17頁練習(xí)第1、2、3題
Ⅳ.課時(shí)小結(jié)
利用正弦定理和余弦定理來解題時(shí),要學(xué)會(huì)審題及根據(jù)題意畫方位圖,要懂得從所給的背景資料中進(jìn)行加工、抽取主要因素,進(jìn)行適當(dāng)?shù)暮喕?/p>
Ⅴ.課后作業(yè)
作業(yè):《習(xí)案》作業(yè)五
高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會(huì)求函數(shù)的定義域.
(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對(duì)應(yīng)法則三要素構(gòu)成的整體.
(2)能正確認(rèn)識(shí)和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點(diǎn).
(3)能正確使用“區(qū)間”及相關(guān)符號(hào),能正確求解各類函數(shù)的定義域.
2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號(hào)表示,運(yùn)算等方面的能力有所提高.
學(xué)過什么函數(shù)?
(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
學(xué)生舉出如等,待學(xué)生說完定義后教師打出投影片,給出定義之后教師也舉一個(gè)例子,問學(xué)生.
提問1.是函數(shù)嗎?
(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)
教師由此指出我們爭論的焦點(diǎn),其實(shí)就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化.
二、新課
現(xiàn)在請(qǐng)同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).
(板書)2.2函數(shù)
一、函數(shù)的概念
高一函數(shù)課件十三篇
請(qǐng)看下面欄目小編為您整理的“高一函數(shù)課件”相關(guān)的完整數(shù)據(jù),希望本文內(nèi)容能為您提供寶貴的幫助。老師根據(jù)事先準(zhǔn)備好的教案課件內(nèi)容給學(xué)生上課,每天老師都需要寫自己的教案課件。教案編寫是教師進(jìn)行教學(xué)投入的重要支持。
高一函數(shù)課件(篇1)
初中數(shù)學(xué)知識(shí)少、淺、難度容易、知識(shí)面笮。高中數(shù)學(xué)知識(shí)廣泛,將對(duì)初中的數(shù)學(xué)知識(shí)推廣和引伸,也是對(duì)初中數(shù)學(xué)知識(shí)的完善。如:初中學(xué)習(xí)的角的概念只是“0—1800”范圍內(nèi)的,但實(shí)際當(dāng)中也有7200和“—300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》,將在三維空間中求一些幾何實(shí)體的體積和表面積;還將學(xué)習(xí)“排列組合”知識(shí),以便解決排隊(duì)方法種數(shù)等問題。如:①三個(gè)人排成一行,有幾種排隊(duì)方法,( =6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學(xué)習(xí)統(tǒng)計(jì)這些排列的數(shù)學(xué)方法。初中中對(duì)一個(gè)負(fù)數(shù)開平方無意義,但在高中規(guī)定了i2=-1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識(shí)同學(xué)們?cè)谝院蟮膶W(xué)習(xí)中將逐漸學(xué)習(xí)到。
(1)初中課堂教學(xué)量小、知識(shí)簡單,通過教師課堂教慢的速度,爭取讓全面同學(xué)理解知識(shí)點(diǎn)和解題方法,課后老師布置作業(yè),然后通過大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對(duì)知識(shí)的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開設(shè)多(有九們課學(xué)生同時(shí)學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時(shí)間三節(jié)課,這樣各科學(xué)習(xí)時(shí)間將大大減少,而教師布置課外題量相對(duì)初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時(shí)間相對(duì)比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個(gè)學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識(shí)讓每個(gè)學(xué)生掌握后再進(jìn)行新課。
初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識(shí)面廣,知識(shí)要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會(huì)貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會(huì)使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開發(fā)在不斷的多樣化,近年來提出了應(yīng)用型題、探索型題和開放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。
其實(shí),自學(xué)能力的提高也是一個(gè)人生活的需要,他從一個(gè)方面也代表了一個(gè)人的素養(yǎng),人的一生只有18---24年時(shí)間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。
初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識(shí)的難度大和知識(shí)面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績也只能是一般程度?,F(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來了不利的思維定勢,對(duì)高中學(xué)生帶來了保守的、僵化的思想,封閉了學(xué)生的豐富反對(duì)創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時(shí)要不就錯(cuò)、要不就答不全面。大多數(shù)學(xué)生不會(huì)分類討論。
初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問題時(shí),大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會(huì)大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時(shí)我們采用對(duì)方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時(shí)的所有根的情形,使學(xué)生很快的掌握了對(duì)所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會(huì)通過對(duì)變量的分析,探索出分析、解決問題的思路和解題所用的數(shù)學(xué)思想。
初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識(shí)的范圍小,知識(shí)層次低,知識(shí)面笮,對(duì)實(shí)際問題的思維受到了局限,就幾何來說,我們都接觸的是現(xiàn)實(shí)生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對(duì)三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實(shí)數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識(shí)的多元化和廣泛性,將會(huì)使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。
高一函數(shù)課件(篇2)
一、教學(xué)目標(biāo)
?知識(shí)與技能】
理解函數(shù)的奇偶性及其幾何意義
?過程與方法】
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題
?情感態(tài)度與價(jià)值觀】
體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣
二、教學(xué)重難點(diǎn)
?重點(diǎn)】
函數(shù)的奇偶性及其幾何意義
?難點(diǎn)】
判斷函數(shù)的奇偶性的方法與格式
三、教學(xué)過程
(一)導(dǎo)入新課
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
1 以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形;
問題:將第一象限和第二象限的圖形看成一個(gè)整體,則這個(gè)圖形可否作為某個(gè)函數(shù)y=f(x)的圖象,若能請(qǐng)說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特殊的關(guān)系?
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;
(2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等
(二)新課教學(xué)
1.函數(shù)的奇偶性定義
像上面實(shí)踐操作1中的圖象關(guān)于y軸對(duì)稱的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點(diǎn)對(duì)稱的函數(shù)即是奇函數(shù)
(1)偶函數(shù)(even function)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù)
(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義
(2)奇函數(shù)(odd function)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù)
注意:
1 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
2 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)
2.具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱
3.典型例題
(1)判斷函數(shù)的奇偶性
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)
解:(略)
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;
2 確定f(-x)與f(x)的關(guān)系;
3 作出相應(yīng)結(jié)論:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù)
(三)鞏固提高
1.教材p46習(xí)題1.3 b組每1題
解:(略)
說明:函數(shù)具有奇偶性的一個(gè)必要條件是,定義域關(guān)于原點(diǎn)對(duì)稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不是即可斷定函數(shù)是非奇非偶函數(shù)
2.利用函數(shù)的奇偶性補(bǔ)全函數(shù)的圖象
(教材p41思考題)
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù)
(四)小結(jié)作業(yè)
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)
課本p46 習(xí)題1.3(a組) 第9、10題, b組第2題
四、板書設(shè)計(jì)
函數(shù)的奇偶性
一、偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù)
二、奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù)
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的`圖象關(guān)于原點(diǎn)對(duì)稱
高一函數(shù)課件(篇3)
函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。
1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。
2.方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。方程思想是動(dòng)中求靜,研究運(yùn)動(dòng)中的等量關(guān)系;
3.函數(shù)方程思想的幾種重要形式
(1)函數(shù)和方程是密切相關(guān)的,對(duì)于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(2)函數(shù)與不等式也可以相互轉(zhuǎn)化,對(duì)于函數(shù)y=f(x),當(dāng)y>0時(shí),就轉(zhuǎn)化為不等式f(x)>0,借助于函數(shù)圖像與性質(zhì)解決有關(guān)問題,而研究函數(shù)的性質(zhì),也離不開解不等式;
(3)數(shù)列的通項(xiàng)或前n項(xiàng)和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點(diǎn)處理數(shù)列問題十分重要;
(4)函數(shù)f(x)=(1+x)^n(n∈N*)與二項(xiàng)式定理是密切相關(guān)的,利用這個(gè)函數(shù)用賦值法和比較系數(shù)法可以解決很多二項(xiàng)式定理的問題;
(5)解析幾何中的許多問題,例如直線和二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關(guān)理論;
(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
高一函數(shù)課件(篇4)
說教學(xué)目標(biāo)
熟練地掌握二次函數(shù)的最值及其求法。
說教學(xué)重點(diǎn)
二次函數(shù)的的最值及其求法。
說教學(xué)難點(diǎn)
二次函數(shù)的最值及其求法。
說教學(xué)過程
一、引入
二次函數(shù)的最值:
二、例題分析:
例1:求二次函數(shù)的最大值以及取得最大值時(shí)的值。
變題1:
變題2:求函數(shù)的最大值。
變題3:求函數(shù)的最大值。
例2:已知的最大值為3,最小值為2,求的取值范圍。
例3:若,是二次方程的兩個(gè)實(shí)數(shù)根,求的最小值。
三、隨堂練習(xí):
1、若函數(shù)在上有最小值,最大值2,若,則=________,=________。
2、已知,是關(guān)于的一元二次方程的兩實(shí)數(shù)根,則的最小值是()
A、0 B、1 C、-1 D、2
3、求函數(shù)在區(qū)間上的最大值。
四、回顧小結(jié)
本節(jié)課了以下內(nèi)容:
1、二次函數(shù)的的最值及其求法。
課后作業(yè)
班級(jí):()班姓名__________
一、基礎(chǔ)題:
1、函數(shù)
A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2
2、函數(shù)的最大值是4,且當(dāng)=2時(shí),=5,則=______,=_______。
二、提高題:
3、試求關(guān)于的函數(shù)在上的最大值,高三。
4、已知函數(shù)當(dāng)時(shí),取最大值為2,求實(shí)數(shù)的值。
5、已知是方程的兩實(shí)根,求的最大值和最小值。
三、題:
已知函數(shù),其中,求該函數(shù)的最大值與最小值,并求出函數(shù)取最大值和最小值時(shí)所對(duì)應(yīng)的自變量的值。
高一函數(shù)課件(篇5)
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)
1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì).
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫出形如
的圖象.
2.通過對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.
3.通過對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議
高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.
(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)
在
和
時(shí),函數(shù)值變化情況的區(qū)分.
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是
的樣子,不能有一點(diǎn)差異,諸如
,
等都不是指數(shù)函數(shù).
(2)對(duì)底數(shù)
的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來.
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
高一函數(shù)課件(篇6)
1、函數(shù):設(shè)A、B為非空集合,如果按照某個(gè)特定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對(duì)應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。
2、函數(shù)定義域的解題思路:
⑴ 若x處于分母位置,則分母x不能為0。
⑵ 偶次方根的被開方數(shù)不小于0。
⑶ 對(duì)數(shù)式的真數(shù)必須大于0。
⑷ 指數(shù)對(duì)數(shù)式的底,不得為1,且必須大于0。
⑸ 指數(shù)為0時(shí),底數(shù)不得為0。
⑹ 如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的,那么,它的定義域是各個(gè)部分都有意義的x值組成的集合。
⑺ 實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義。
⑴ 觀察法:適用于初等函數(shù)及一些簡單的由初等函數(shù)通過四則運(yùn)算得到的函數(shù)。
⑵ 圖像法:適用于易于畫出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。
⑶ 配方法:主要用于二次函數(shù),配方成 y=(x-a)2+b 的形式。
⑷ 代換法:主要用于由已知值域的函數(shù)推測未知函數(shù)的值域。
⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。
6、映射:設(shè)A、B是兩個(gè)非空集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從集合A到集合B的映射。
⑴ 集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè)。
⑶ 不要求集合B中的每一個(gè)元素在集合A中都有原象。
⑴ 在定義域的不同部分上有不同的解析式表達(dá)式。
⑵ 各部分自變量和函數(shù)值的取值范圍不同。
⑶ 分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集。
8、復(fù)合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復(fù)合函數(shù)。
高一函數(shù)課件(篇7)
一、說教材
(一)地位與重要性
函數(shù)的最值是《高中數(shù)學(xué)》一年級(jí)第一學(xué)期的內(nèi)容,是函數(shù)基本性質(zhì)的重要部分。在實(shí)際問題的解決過程中,建立了變量間的函數(shù)關(guān)系后,求最值培養(yǎng)了學(xué)生運(yùn)用基礎(chǔ)理論研究具體問題的能力,這也是學(xué)習(xí)數(shù)學(xué)的目的之一。函數(shù)最值的教學(xué)在培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想同時(shí)也可以使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)思維的學(xué)習(xí)習(xí)慣。函數(shù)的思想是一種重要的數(shù)學(xué)思想,它體現(xiàn)了運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的觀點(diǎn),本節(jié)課對(duì)初高中知識(shí)的銜接起到了承上啟下的作用。函數(shù)的最值問題與不等式、方程、參數(shù)范圍的探求及解析幾何等知識(shí)綜合在一起往往能編擬綜合性較強(qiáng)的新型題目,可以綜合考查學(xué)生應(yīng)用函數(shù)知識(shí)分析解決問題的能力,從而成為高考的高檔解答題,是高考測試的熱點(diǎn)之一。
(二)教學(xué)目標(biāo)
知識(shí)與能力目標(biāo):掌握求二次函數(shù)最值的常用方法——配方法,培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想和運(yùn)用基礎(chǔ)理論研究解決具體問題的能力。
情感目標(biāo):經(jīng)歷和體驗(yàn)數(shù)學(xué)活動(dòng)的過程以及數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的積極性,樹立學(xué)好數(shù)學(xué)的信心。
過程目標(biāo):通過課堂學(xué)習(xí)活動(dòng)培養(yǎng)學(xué)生相互間的合作交流,且在相互交流的過程中養(yǎng)成學(xué)生表述、抽象、總結(jié)的思維習(xí)慣,進(jìn)而獲得成功的體驗(yàn)。
科研目標(biāo):在教師指導(dǎo)下學(xué)生經(jīng)歷和體驗(yàn)探究過程的方法。
(三)教學(xué)重難點(diǎn)
重點(diǎn):配方法、數(shù)形結(jié)合求二次函數(shù)的最值。
難點(diǎn):二次函數(shù)在閉區(qū)間上的最值。
二、說教法與學(xué)法
在初中學(xué)生已經(jīng)學(xué)習(xí)過二次函數(shù)的知識(shí),根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,本節(jié)課主要采用探究式教學(xué)法和講練結(jié)合法進(jìn)行教學(xué)。教學(xué)過程也是一個(gè)學(xué)生主動(dòng)建構(gòu)的過程,教師不能無視學(xué)生已有的經(jīng)驗(yàn),企圖從外部將新知識(shí)強(qiáng)行裝入學(xué)生的頭腦,而是要把學(xué)生現(xiàn)有的知識(shí)經(jīng)驗(yàn)作為新知識(shí)的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”及發(fā)現(xiàn)新的知識(shí)經(jīng)驗(yàn)。在本堂課學(xué)習(xí)中,學(xué)生發(fā)揮主體作用,主動(dòng)地思考探究求解最值的最優(yōu)策略,并歸納出自己的解題方法,將知識(shí)主動(dòng)納入已建構(gòu)好的知識(shí)體系,真正做到“學(xué)會(huì)學(xué)習(xí)”。
三、說教學(xué)過程
(一)課題引入
環(huán)節(jié)
教學(xué)過程
設(shè)計(jì)說明
課題講解
例:動(dòng)物園要建造一面靠墻的2間面積相同的長方形熊貓居室,如果可供建造圍墻的材料長是30米,那么寬為多少米時(shí)才能使所建造的熊貓居室面積最大?熊貓居室的最大面積是多少平方米?
學(xué)生通過此例感受到在實(shí)際問題中需要解決函數(shù)的最值問題,從而引發(fā)學(xué)習(xí)本節(jié)內(nèi)容的興趣。
教學(xué)手段:用PPT展示題目
教師引導(dǎo)學(xué)生討論解答,并個(gè)別答疑、點(diǎn)撥,收集學(xué)生的解法,挑出若干答案在實(shí)物投影儀上進(jìn)行展示,并進(jìn)行點(diǎn)評(píng)。
學(xué)生的解法主要為函數(shù)最值法和利用基本不等式求最值,由學(xué)生評(píng)價(jià)兩種方法,為閉區(qū)間上二次函數(shù)的最值教學(xué)打下伏筆
教學(xué)手段:實(shí)物投影儀
(二)新知教學(xué)
環(huán)節(jié)
教學(xué)過程
設(shè)計(jì)說明
課題講解
一、函數(shù)最大值和最小值的概念
通過引例最值的求解,引導(dǎo)學(xué)生闡述函數(shù)最大值和最小值的概念。
學(xué)生口述師板書。
一般地,設(shè)函數(shù)在處的函數(shù)值是.如果對(duì)于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最小值,記作;如果對(duì)于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最大值記作。
二、例題講練
例1、求二次函數(shù)的最大值或者最小值:
師生共同完成一例,高一學(xué)生要養(yǎng)成規(guī)范的書寫格式和習(xí)慣,其余題目請(qǐng)學(xué)生板演。
學(xué)生根據(jù)已有的能力和經(jīng)驗(yàn),動(dòng)手得出答案,教師點(diǎn)評(píng)。提醒注意當(dāng)取何值時(shí),函數(shù)取到最值。
培養(yǎng)學(xué)生闡述、分析、理解概念的能力,引入最大值概念的過程是遵循由已知去認(rèn)識(shí)未知的認(rèn)識(shí)規(guī)律進(jìn)行設(shè)計(jì)的,現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。讓學(xué)生從求實(shí)際問題的最大值入手,由熟悉的二次函數(shù)圖象的頂點(diǎn)所具有的特點(diǎn)出發(fā),得到求二次函數(shù)最大值(最小值)的方法。
突出學(xué)生的主體地位,發(fā)揮教師的主導(dǎo)作用,培養(yǎng)思維的嚴(yán)謹(jǐn)性以及轉(zhuǎn)化能力,通過區(qū)間的變化讓學(xué)生充分感受到二次函數(shù)的最值的求解要討論對(duì)稱軸與所給區(qū)間的關(guān)系。
教學(xué)方式:講練結(jié)合
例2、在的條件下,求函數(shù)的最大值和最小值。
教師引導(dǎo)學(xué)生逐步深入思考:
1、定義域與函數(shù)最值是什么關(guān)系?
2、轉(zhuǎn)化后要研究的函數(shù)是什么?
教學(xué)方式:學(xué)生自主探究
高一函數(shù)課件(篇8)
一、方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)y=f(x),使f(x)=0 的實(shí)數(shù)x叫做函數(shù)的零點(diǎn)。(實(shí)質(zhì)上是函數(shù)y=f(x)與x軸交點(diǎn)的橫坐標(biāo))
2、函數(shù)零點(diǎn)的意義:方程f(x)=0 有實(shí)數(shù)根函數(shù)y=f(x)的圖象與x軸有交點(diǎn)函數(shù)y=f(x)有零點(diǎn)
3、零點(diǎn)定理:函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,并且有f(a)f(b)0,那么函數(shù)y=f(x)在區(qū)間(a,b)至少有一個(gè)零點(diǎn)c,使得f( c)=0,此時(shí)c也是方程 f(x)=0 的根。
4、函數(shù)零點(diǎn)的求法:求函數(shù)y=f(x)的零點(diǎn):
(1) (代數(shù)法)求方程f(x)=0 的實(shí)數(shù)根;
(2) (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)y=f(x)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
5、二次函數(shù)的零點(diǎn):二次函數(shù)f(x)=ax2+bx+c(a≠0).
1)△0,方程f(x)=0有兩不等實(shí)根,二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
2)△=0,方程f(x)=0有兩相等實(shí)根(二重根),二次函數(shù)的圖象與x軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△0,方程f(x)=0無實(shí)根,二次函數(shù)的圖象與x軸無交點(diǎn),二次函數(shù)無零點(diǎn).
二、二分法
1、概念:對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)f(b)0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的'區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。
2、用二分法求方程近似解的步驟:
⑴確定區(qū)間[a,b],驗(yàn)證f(a)f(b)0,給定精確度ε;
⑵求區(qū)間(a,b)的中點(diǎn)c;
⑶計(jì)算f(c),
①若f(c)=0,則c就是函數(shù)的零點(diǎn);
②若f(a)f(c)0,則令b=c(此時(shí)零點(diǎn)x0∈(a,c))
③若f(c)f(b)0,則令a=c(此時(shí)零點(diǎn)x0∈(c,b))
(4)判斷是否達(dá)到精確度ε:即若|a-b|ε,則得到零點(diǎn)近似值為a(或b);否則重復(fù)⑵~⑷
三、函數(shù)的應(yīng)用:
(1)評(píng)價(jià)模型: 給定模型利用學(xué)過的知識(shí)解模型驗(yàn)證是否符合實(shí)際情況。
(2)幾個(gè)增長函數(shù)模型:一次函數(shù):y=ax+b(a0)
指數(shù)函數(shù):y=ax(a1) 指數(shù)型函數(shù): y=kax(k1)
冪函數(shù): y=xn( nN*) 對(duì)數(shù)函數(shù):y=logax(a1)
二次函數(shù):y=ax2+bx+c(a0)
增長快慢:V(ax)V(xn)V(logax)
解不等式 (1) log2x x2 (2) log2x 2x
(3)分段函數(shù)的應(yīng)用:注意端點(diǎn)不能重復(fù)取,求函數(shù)值先判斷自變量所在的區(qū)間。
(4)二次函數(shù)模型: y=ax2+bx+c(a≠0) 先求函數(shù)的定義域,在求函數(shù)的對(duì)稱軸,看它在不在定義域內(nèi),在的話代進(jìn)求出最值,不在的話,將定義域內(nèi)離對(duì)稱軸最近的點(diǎn)代進(jìn)求最值。
(5)數(shù)學(xué)建模:
高一函數(shù)課件(篇9)
教學(xué)目標(biāo):
(1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點(diǎn)難點(diǎn):
能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
教學(xué)過程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,
AB長x(m)123456789
BC長(m)12
面積y(m2)48
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,
對(duì)于1.,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對(duì)前面提出的問題的解答能作出什么猜想?讓學(xué)生思意見,達(dá)成共識(shí):當(dāng)AB的長為5cm,BC的長為10m時(shí),圍成的矩形面積最大;最大面積為50m2。
對(duì)于2,可讓學(xué)生分組討論、交流,然后意見。形成共識(shí),x的值不可以任意取,有限定范圍,其范圍是0
高一函數(shù)課件(篇10)
同一只封建宗法制度的黑手,伸出了兩條繩索,捆住了婦女的脖子,朝著相反的方向緊勒,要把勞動(dòng)?jì)D女置于死地而后快。祥林嫂當(dāng)時(shí)就處在這種極端悲慘的境地中:
族權(quán)迫使她寡而再嫁,夫權(quán)又視此為奇恥大辱,使她忍辱含冤,永遠(yuǎn)生活在恥辱之中。祥林嫂以后的悲劇,都是由此而引起的。
那么,祥林嫂是如何對(duì)待新迫害的呢?
3.高潮:
①祥林嫂為什么又一次來到魯四老爺家?
②有人認(rèn)為,喪夫失子有偶然性,這種看法對(duì)不對(duì)?
喪夫失子似乎有偶然性,然而隱藏在偶然性背后的,是那起決定作用的必然性。祥林嫂的丈夫死于舊社會(huì)中蔓延著的傳染病傷寒,阿毛死于祥林嫂的貧困、勞碌。(若不是忙著打柴摘茶養(yǎng)蠶,能讓年僅兩三歲的孩子去剝豆嗎?)因此,實(shí)質(zhì)上,是罪惡的政權(quán)奪走了祥林嫂的丈夫和兒子的生命,使她陷于嫁而再寡的境地。作者開始把批判的筆觸由封建夫權(quán)、族權(quán)擴(kuò)展到封建政權(quán)。
按照封建宗法觀念,婦女出嫁從夫,夫死從子,一旦喪夫失子,則連在家庭中生存的權(quán)利都被剝奪了。因此,大伯來收屋使祥林嫂走投無路,只好再一次來到魯家。她到魯家后,又遭受了更大的打擊。
③在魯四老爺,人們對(duì)待祥林嫂這個(gè)嫁而再寡的不幸女人態(tài)度如何?
A.魯四老爺?shù)膽B(tài)度:
魯四老爺站在頑固維護(hù)封建宗法制度的立場上,從精神上殘酷地虐殺她。他暗暗地告誡四嬸的那段話,就是置祥林嫂于死地而又不露一絲血痕的軟刀子。(通過四嬸先后喊出三句你放著罷,殺人不見血地葬送了祥林嫂的性命。)
B.人們的態(tài)度:
人們叫她的聲調(diào)和先前很不同。
魯迅用他那犀利的筆鋒,從廣闊的領(lǐng)域里揭示了封建社會(huì)黑暗的程度。
人們對(duì)祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時(shí)地向人們?cè)V說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。
C.柳媽說鬼:
④祥林嫂是如何對(duì)待這如此沉重的打擊的?其結(jié)果如何?
為了爭得做人的權(quán)利,為了求得一線生存的希望,她在竭盡全力地反抗著:
她背著沉重的精神包袱,整日勞碌著,以便積夠十二元鷹洋,用捐門檻的方法去擺脫人們?cè)陉柺?、陰世間給她設(shè)下的罪名,她忍受著咬嚙人心的嘲笑和侮辱,在無邊的寂寞和悲哀中,默默干了一年,這是何等堅(jiān)韌的反抗精神??!
而反抗的結(jié)果,出乎柳媽、祥林嫂的預(yù)想,這血淋淋的事實(shí)深刻地說明了:祥林嫂是無法贖罪的,祥林嫂陷入了求生不得,欲死不能的境地。
4.結(jié)局:
當(dāng)祥林嫂被折磨得像木偶人,喪失了當(dāng)牛做馬的條件后,魯四老爺就一腳把她踢出門外,使她終于成了只有那眼珠間或一輪,還可以表示她是一個(gè)活物的僵尸。即使這樣,她在臨死前,還向我提出了三個(gè)問題:
A.一個(gè)人死了之后,究竟有沒有魂靈的?
B.那么,也就有地獄了?
C.那么,死掉的一家的人,都能見面的?
這是對(duì)魂靈的有無表示疑惑。
她希望人死后有靈魂,因?yàn)樗肟匆娮约旱膬鹤?;她害怕人死后有靈魂,因?yàn)樗ε略陉庨g被鋸成兩半。這種疑惑是她對(duì)自己命運(yùn)的疑惑,但也正是這種疑惑,這種無法解脫的矛盾,使她在臨死前受到了極大的精神折磨,最后,悲慘地死去。
從祥林嫂一生的悲慘遭遇中,可以清楚地看到,封建的宗法制度正是用政權(quán)、族權(quán)、神權(quán)、夫權(quán)這四條繩索把祥林嫂活活地勒死的。
祥林嫂一生的悲慘遭遇,正是舊中國千百萬勞動(dòng)?jì)D女悲慘遭遇的真實(shí)寫照。作者正是通過塑造祥林嫂這一典型人物,對(duì)吃人的封建制度和封建禮教進(jìn)行深刻的揭露和有力地抨擊的。
小結(jié):
祥林嫂是生活在舊中國的一個(gè)被踐踏、被愚弄、被迫害、被鄙視的勤勞、善良、質(zhì)樸、頑強(qiáng)的勞動(dòng)?jì)D女的典型形象。
總之,祥林嫂的悲劇是一個(gè)社會(huì)悲劇,造成這一悲劇的根源是封建禮教對(duì)中國勞動(dòng)?jì)D女的摧殘和封建思想對(duì)當(dāng)時(shí)中國社會(huì)的根深蒂固的統(tǒng)治。
第三課時(shí)
本課時(shí)重點(diǎn)分析魯四老爺、我和柳媽的形象。
一、檢查作業(yè):
二、分析魯四老爺:
魯四老爺是當(dāng)時(shí)農(nóng)村中地主階級(jí)的代表人物,是資產(chǎn)階級(jí)民主革命時(shí)期地主階級(jí)知識(shí)分子的典型形象。他政治上迂腐、保守,頑固地維護(hù)舊有的封建制度,反對(duì)一切改革與革命。他思想上反動(dòng),尊崇理學(xué)和孔孟之道。自覺維護(hù)封建制度和封建禮教。他是造成祥林嫂悲劇的一個(gè)重要人物。
1.作者是通過什么手法來刻畫這個(gè)人物的呢?
①間接描寫:
通過魯四老爺?shù)臅筷愒O(shè)的描寫,點(diǎn)明了魯四老爺?shù)纳矸郑ǖ刂麟A級(jí)、封建理學(xué)的衛(wèi)道士),揭露了他的丑惡本質(zhì),從而揭示出他成為殺害祥林嫂的劊子手的深刻的階級(jí)根源和思想根源。
②直接描寫:
A.行動(dòng)描寫:
這表現(xiàn)在祥林嫂被搶走的兩件事上:
當(dāng)婆婆一邊搶人一邊來領(lǐng)工錢時(shí),魯四老爺把祥林嫂一文還沒有的工錢全交給了婆婆。
與此相對(duì)照的是對(duì)被壓迫的寡婦祥林嫂的冷酷無情。
祥林嫂曾那樣辛勤地為魯家勞動(dòng)過,可當(dāng)她遭到惡運(yùn)時(shí),魯家卻無動(dòng)于衷,連祥林嫂走沒走、怎么走的,都毫不過問,只是到了正午,四嬸肚子餓了,這才想起了祥林嫂淘米時(shí)拿走米和淘籮,于是傾巢出動(dòng)分頭尋淘籮;連平時(shí)擺派頭、端架子的魯四老爺都踱出門外,直到河邊,等看見米和淘籮平平正正的放在岸上,旁邊還有一株菜時(shí),這才放心。這場虛驚,入木三分地揭露了:在封建統(tǒng)治者的眼里,一個(gè)勞動(dòng)?jì)D女的命運(yùn)都不如一個(gè)淘籮、一點(diǎn)米、一株菜,魯四老爺冷酷殘忍的嘴臉躍然紙上。
B.語言描寫:
在祥林嫂的問題上,魯四老爺一共開過六次口,說了百十來個(gè)字,卻就把他反動(dòng)、頑固、虛偽自私、陰險(xiǎn)狠毒的性格特征,把他殺害祥林嫂的罪行,揭露得淋漓盡致。
a.祥林嫂被搶前:
b.祥林嫂被搶時(shí):
c.當(dāng)他為尋淘籮,踱到河邊時(shí):
d.緊接著,午飯之后,衛(wèi)婆子又來時(shí):
e.對(duì)四嬸的暗暗告誡:
f.祥林嫂死后:
作為這六次開口背景的是魯四老爺虛偽寒暄后的大罵其新黨,它恰恰深刻地揭示了那六次開口的根源。
三、分析我這一形象:
小說中的我是一個(gè)具有進(jìn)步思想的小資產(chǎn)階級(jí)知識(shí)分子的形象。我有反封建的思想傾向,憎惡魯四老爺,同情祥林嫂。對(duì)祥林嫂提出的魂靈的有無的問題,之所以作了含糊的回答,有其善良的一面;同時(shí)也反映了我的軟弱和無能。
在小說的結(jié)構(gòu)上,我又起著線索的作用。祥林嫂一生的悲慘遭遇都是通過我的所見所聞來展現(xiàn)的。我是事件的見證人。
四、分析柳媽:
問:有人認(rèn)為柳媽是幫助魯四老爺殺害祥林嫂的兇手。你是怎樣來看待這一問題呢?
明確:柳媽和祥林嫂一樣都是舊社會(huì)的受害者。雖然她臉上已經(jīng)打皺,眼睛已經(jīng)干枯,可是在年節(jié)時(shí)還要給地主去幫工,可見,她也是一個(gè)受壓迫的勞動(dòng)?jì)D女。但是,由于她受封建迷信思想和封建禮教的毒害很深,相信天堂、地獄之類邪說和餓死事小,失節(jié)事大的理學(xué)信條,所以她對(duì)祥林嫂改嫁時(shí)頭上留下的傷疤,采取奚落的態(tài)度。至于她講陰司故事給祥林嫂聽,也完全出于善意,主觀愿望還是想為祥林嫂尋求贖罪的辦法,救她跳出苦海,并非要置祥林嫂于死地,只是結(jié)果適得其反。
她的主觀愿望和客觀效果的矛盾說明柳媽是以剝削階級(jí)統(tǒng)治人民的思想──封建禮教和封建迷信思想為指導(dǎo),來尋求解救祥林嫂的藥方的,這不但不會(huì)產(chǎn)生療效的效果,反而給自己的姐妹造成了難以支持的精神重壓,把祥林嫂推向更恐怖的深淵之中。
高一函數(shù)課件(篇11)
教學(xué)目的:
1.訓(xùn)練按一定目的從課文中篩選信息的能力。
2.理解辯證立論,重點(diǎn)突出,廣征博引,逐層深人的寫法。
3.認(rèn)識(shí)治學(xué)中占有材料與鉆研理論的關(guān)系;樹立實(shí)踐第一的辯證唯物主義觀點(diǎn)。
教學(xué)設(shè)想:
1.解讀,關(guān)鍵要抓住“虛”與“實(shí)”的關(guān)系,理清課文的脈絡(luò),重點(diǎn)認(rèn)識(shí)圍繞基本觀點(diǎn)立論辯證,廣征博引、層層深人的論述特點(diǎn),理清文章觀點(diǎn)與材料之間的關(guān)系,把握課文的重點(diǎn)。
2.安排二課時(shí)。
教學(xué)過程及步驟:
一、開場白:
1980年10月22日,中國語言學(xué)會(huì)成立。呂叔湘先了題為《把我國語言科學(xué)推向前進(jìn)》的講話。全文分“中和外的關(guān)系”、“虛和實(shí)的關(guān)系”、“動(dòng)和靜的關(guān)系”、“通和專的關(guān)系”四個(gè)部分,分別論述了語言研究工作中需要處理好的四對(duì)關(guān)系。是其中的第二部分。題目是選作教材時(shí)編者加的。文章雖然“主要談漢語研究”,但正如作者所言“在不同程度上也適用于其他方面”,對(duì)于一般治學(xué)和研究問題,對(duì)于中職學(xué)生的學(xué)習(xí),包括.寫作時(shí)處理好選材與立意的關(guān)系,都具有重要的指導(dǎo)意義。
二、作者簡介:
呂叔湘(1904—1998),江蘇丹陽人。當(dāng)代著名語言學(xué)家、語文教育家,先后擔(dān)任中國社會(huì)科學(xué)院語言研究所研究員、所長,兼任《中國語文》雜志主編,全國文字改革研究會(huì)主席,中國語言學(xué)會(huì)會(huì)長,語文出版社社長,并擔(dān)任全國政協(xié)第二、三屆委員,全國人大第三、四、五、六屆代表,五屆常委,法制委員會(huì)委員。他于1926年畢業(yè)于國立東南大學(xué),曾任過中學(xué)教員。1936年留學(xué)英國,1938年回國。先后任云南大學(xué)文史系副教授、華西協(xié)和大學(xué)中國文化研究所研究員、金陵大學(xué)文化研究所研究員兼中央大學(xué)中文系教授、開明書店編輯。建國后任清華大學(xué)中文系教授,1952年到中國社會(huì)科學(xué)院語言研究所工作。他幾十年來一直從事語文教學(xué)和研究,重點(diǎn)研究漢語語法,對(duì)我國語言學(xué)的發(fā)展作出了重要貢獻(xiàn)。主要著作有《中國文法要略》、《語法修辭講話》、《現(xiàn)代漢語八百詞》等。他治學(xué)嚴(yán)謹(jǐn),著述材料豐富,引證充分,闡述詳盡,見解精辟。他還寫有許多普及性語文讀物,通俗實(shí)用,生動(dòng)有趣。
三、分析課文:
全文共11段,可分為三個(gè)部分。
第一部分(第1~2段):系全文的總綱,提出論題并表明了觀點(diǎn):理論從事例中來,事例從觀察中來、從實(shí)驗(yàn)中來。文章首句提出論題,緊接著以兩個(gè)設(shè)問表明了觀點(diǎn)。在接下來的闡述中,作者以語言學(xué)研究為例說明了理論來自于事例,事例來自于觀察和實(shí)驗(yàn)的道理。文章的第2段運(yùn)用古人做學(xué)問、國外各種學(xué)派林立和“禪宗和尚”的例子闡述對(duì)前人的理論也要靠觀察來驗(yàn)證的道理。在論述中,作者既承認(rèn)“前人的理論是我們的財(cái)富”,又指出“前人的理論無論多么重要”,都“要用自己的觀察來驗(yàn)證”;既肯定了講“家法”的好處,又指出其缺點(diǎn),全面辯證,客觀公允,令人信服。這一段是對(duì)第1段的進(jìn)一步強(qiáng)調(diào)和補(bǔ)充。
第二部分(第3~6段):具體闡述理論和事實(shí)的辯證關(guān)系并指出了具體的處理方法。第3段從事實(shí)對(duì)理論的作用角度舉出“反切”、“等韻”和“文字學(xué)”等理論的形成作為例證,指出事實(shí)能夠決定理論。第4段從比較理論和事實(shí)輕重的角度,運(yùn)用達(dá)爾文物種起源理論的形成和明朝兩位理學(xué)家的故事作為論據(jù),指出沒有事實(shí)作基礎(chǔ),理論就靠不住,更加突出了事實(shí)對(duì)理論的決定性作用。第5段是從理論對(duì)事實(shí)的作用角度,肯定了理論能引導(dǎo)人去發(fā)現(xiàn)事實(shí)的作用。運(yùn)用了門捷列夫元素周期表填寫等例子。第6段具體提出處理二者關(guān)系的方法,特別強(qiáng)調(diào)“不可走極端”。這一部分的論述強(qiáng)調(diào)了事實(shí)對(duì)理論的決定性作用,其目的在于糾正現(xiàn)實(shí)中存在的重理論輕事實(shí)的認(rèn)識(shí)。可貴的是作者“矯枉”而不“過正”,沒有偏執(zhí)一端,沒有抹殺理論在治學(xué)中的作用,而是在輕重有別、詳略有致、突出重點(diǎn)的同時(shí),兼顧到了事物的各個(gè)方面,從而顯得全面周到,辯證科學(xué)。作者對(duì)問題認(rèn)識(shí)的深刻性和完整性由此可見一斑。
第三部分(第7~11段):著重論述觀察和實(shí)驗(yàn)方面的有關(guān)問題。文章聯(lián)系實(shí)際,在分析重理論輕事例的原因、指出其危害的同時(shí),闡述了觀察和實(shí)驗(yàn)必須具備的精神和態(tài)度,強(qiáng)調(diào)要親自去觀察、實(shí)驗(yàn),收集事例。第7段對(duì)重理論輕事例的錯(cuò)誤傾向提出批評(píng),引用了饒?jiān)L┙淌诘脑捵鳛檎摀?jù),切合實(shí)際,富于針對(duì)性。第8段運(yùn)用“有限與無眼”的故事和葉斯丕森的例子闡述觀察、實(shí)驗(yàn)“不容易”的一個(gè)原因,指出觀察、實(shí)驗(yàn)不能懶惰,必須具備換而不舍的精神。第9段闡述了觀察、實(shí)驗(yàn)“不容易”的另一個(gè)原因,指出觀察、實(shí)驗(yàn)不能有成見,必須有客觀的態(tài)度。第10段收束上文,進(jìn)一步指出不愿觀察實(shí)驗(yàn)的害處。第11段指出觀察、實(shí)驗(yàn)必須自己去做,徹底堵住了不愿觀察、實(shí)驗(yàn)者的退路。這一部分是第二部分論述的具體化和深化。
四、.總結(jié)全文:
文章緊緊圍繞治學(xué)過程中“虛與實(shí)”也就是理論和事例的關(guān)系問題,運(yùn)用大量典型、生動(dòng)的事實(shí)和理論材料,進(jìn)行了全面透徹的論述。明確提出理論從事例中來,事例則從觀察和實(shí)驗(yàn)中來的觀點(diǎn)。文章針對(duì)重理論輕事例的現(xiàn)實(shí),在辯證立論、全面論述的基礎(chǔ)上,強(qiáng)調(diào)突出了觀察、實(shí)驗(yàn)對(duì)理論形成的作用這一重點(diǎn)。全文第一部分提出兩者關(guān)系的問題,表明觀點(diǎn);第二部分緊緊圍繞觀點(diǎn),對(duì)兩者關(guān)系展開論述;第三部分在論述兩者關(guān)系的基礎(chǔ)上,進(jìn)一步闡述觀察和實(shí)驗(yàn)的有關(guān)問題,從整體到局部,逐步剖析,層層深人,不斷具體、深化,具有嚴(yán)密的邏輯性和較強(qiáng)的說服力。
高一函數(shù)課件(篇12)
一、教學(xué)目標(biāo):
知識(shí)與技能:理解指數(shù)函數(shù)的概念,能夠判斷指數(shù)函數(shù)。
過程與方法:通過觀察,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的概念。領(lǐng)會(huì)從特殊到一般的數(shù)學(xué)思想方法,從而培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問題的能力。
情感態(tài)度與價(jià)值觀:在指數(shù)函數(shù)的學(xué)習(xí)過程中,體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):指數(shù)函數(shù)的概念,判斷指數(shù)函數(shù)。教學(xué)難點(diǎn):對(duì)底數(shù)的分類。
三、學(xué)情分析:
學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的知識(shí),指數(shù)函數(shù)是函數(shù)知識(shí)中重要的一部分內(nèi)容,學(xué)生若能將其與學(xué)過的正比例函數(shù)、一次函數(shù)、二次函數(shù)進(jìn)行對(duì)比著去理解指數(shù)函數(shù)的概念、性質(zhì)、圖象,則一定能從中發(fā)現(xiàn)指數(shù)函數(shù)的本質(zhì),所以對(duì)已經(jīng)熟悉掌握函數(shù)的學(xué)生來說,學(xué)習(xí)本課并不是太難。學(xué)生通過對(duì)高中數(shù)學(xué)中函數(shù)的學(xué)習(xí),對(duì)解決一些數(shù)學(xué)問題有一定的能力。通過教師啟發(fā)式引導(dǎo),學(xué)生自主探究完成本節(jié)課的學(xué)習(xí)。高一學(xué)生的認(rèn)知水平從形象向抽象、從特殊向一般過渡,思維能力的提高是一個(gè)轉(zhuǎn)折期,但是,學(xué)生的自主意識(shí)強(qiáng),有主動(dòng)學(xué)習(xí)的愿望與能力。有好奇心、好勝心、進(jìn)取心,富有激情、思維活躍。
四、教學(xué)內(nèi)容分析:
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教B版)第二章第一節(jié)第二課()《指數(shù)函數(shù)及其性質(zhì)》。根據(jù)我所任教的學(xué)生的實(shí)際情況,我將《指數(shù)函數(shù)及其性質(zhì)》劃分為三節(jié)課(探究指數(shù)函數(shù)的概念,圖象及其性質(zhì),指數(shù)函數(shù)及其性質(zhì)的應(yīng)用),這是第一節(jié)課“探究指數(shù)函數(shù)的概念”。指數(shù)函數(shù)是重要的基本初等函數(shù)之一,作為常見函數(shù),它不僅是今后學(xué)習(xí)對(duì)數(shù)函數(shù)和冪函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究。函數(shù)及其圖象在高中數(shù)學(xué)中占有很重要的位置。如何突破這個(gè)即重要又抽象的內(nèi)容,其實(shí)質(zhì)就是將抽象的符號(hào)語言與直觀的圖象語言有機(jī)的結(jié)合起來,通過具有一定思考價(jià)值的問題,激發(fā)學(xué)生的求知欲望――持久的好奇心。我們知道,函數(shù)的表示法有三種:列表法、圖象法、解析法,以往的函數(shù)的學(xué)習(xí)大多只關(guān)注到圖象的作用,這其實(shí)只是借助了圖象的直觀性,只是從一個(gè)角度看函數(shù),是片面的。本節(jié)課,主要是讓學(xué)生學(xué)會(huì)如何去發(fā)現(xiàn)研究心的函數(shù),為后面學(xué)習(xí)對(duì)數(shù)函數(shù)、冪函數(shù)做出鋪墊。
五、教學(xué)過程:
(一)創(chuàng)設(shè)情景
問題1:某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),……一個(gè)這樣的細(xì)胞分裂x次后,得到的細(xì)胞分裂的個(gè)數(shù)y與x之間,構(gòu)成一個(gè)函數(shù)關(guān)系,能寫出x與y之間的函數(shù)關(guān)系式嗎?
問題2:《莊子·天下篇》中寫道:“一尺之棰,日取其半,萬世不竭?!闭?qǐng)你寫出截取x次后,木棰剩余量y關(guān)于x的函數(shù)關(guān)系式?
(二)導(dǎo)入新課
引導(dǎo)學(xué)生觀察,兩個(gè)函數(shù)中,有什么共同特征?
(三)新課講授指數(shù)函數(shù)的定義
(四)鞏固與練習(xí)例題
(五)課堂小結(jié)
(六)布置作業(yè)
高一函數(shù)課件(篇13)
一、教學(xué)類型
新知課
二、教學(xué)目標(biāo)
1、理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的定義域,值域及其奇偶性。
2、通過對(duì)指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):理解指數(shù)函數(shù)的定義,把握?qǐng)D象和性質(zhì)。
難點(diǎn):認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。
四、教學(xué)用具
投影儀
五、教學(xué)方法
啟發(fā)討論研究式
六、教學(xué)過程
1)引入新課
我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)———————指數(shù)函數(shù)。指數(shù)函數(shù)(板書)
這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:
問題1:某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),……一個(gè)這樣的細(xì)胞分裂次后,得到的細(xì)胞分裂的個(gè)數(shù)與之間,構(gòu)成一個(gè)函數(shù)關(guān)系,能寫出與之間的函數(shù)關(guān)系式嗎?
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系。
1、定義:形如的函數(shù)稱為指數(shù)函數(shù)。(板書)
教師在給出定義之后再對(duì)定義作幾點(diǎn)說明。
2、幾點(diǎn)說明(板書)
(1)關(guān)于對(duì)的規(guī)定:
(2)關(guān)于指數(shù)函數(shù)的定義域(板書)
(3)關(guān)于是否是指數(shù)函數(shù)的判斷(板書)剛才分別認(rèn)識(shí)了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請(qǐng)看下面函數(shù)是否是指數(shù)函數(shù)。學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象。最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
3、歸納性質(zhì)
七、思考問題,設(shè)置懸念
八、小結(jié)
高一函數(shù)課件(錦集十一篇)
作為一名教職工,時(shí)常要開展教案準(zhǔn)備工作,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。寫教案需要注意哪些格式呢?以下是小編為大家整理的高一數(shù)學(xué)教案函數(shù),歡迎大家分享。
高一函數(shù)課件 篇1
教學(xué)目標(biāo):
知識(shí)與技能:讓學(xué)生理解函數(shù)的定義,掌握函數(shù)的表示方法(解析式、表格、圖像),能識(shí)別并判斷函數(shù)關(guān)系。
過程與方法:通過實(shí)例,引導(dǎo)學(xué)生觀察、分析、歸納,培養(yǎng)學(xué)生從實(shí)際問題中抽象出函數(shù)關(guān)系的能力。
情感、態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生的數(shù)學(xué)邏輯思維能力和抽象思維能力,讓學(xué)生感受數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用價(jià)值。
教學(xué)重點(diǎn):
函數(shù)的定義及其表示方法。
教學(xué)難點(diǎn):
從實(shí)際問題中抽象出函數(shù)關(guān)系。
教學(xué)過程:
一、導(dǎo)入新課
通過日常生活中的實(shí)例(如購物消費(fèi)與付款金額的關(guān)系,汽車行駛距離與時(shí)間的關(guān)系等),引導(dǎo)學(xué)生思考這些關(guān)系的特點(diǎn),引出函數(shù)的概念。
二、新課講解
函數(shù)的定義:設(shè)A、B是非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),記作y=f(x),x∈A。
函數(shù)的表示方法:
解析式法:如y=x^2,y=2x+1等。
列表法:通過列出x和y的對(duì)應(yīng)值來表示函數(shù)關(guān)系。
圖像法:通過繪制函數(shù)的圖像來表示函數(shù)關(guān)系。
函數(shù)關(guān)系的判斷:通過實(shí)例,引導(dǎo)學(xué)生判斷哪些關(guān)系可以構(gòu)成函數(shù),哪些不能,并說明原因。
三、例題講解
通過解析式法表示函數(shù)關(guān)系。
通過列表法表示函數(shù)關(guān)系。
通過圖像法表示函數(shù)關(guān)系。
四、課堂練習(xí)
布置一些練習(xí)題,讓學(xué)生獨(dú)立完成,以鞏固所學(xué)知識(shí)。
五、課堂小結(jié)
總結(jié)本節(jié)課的學(xué)習(xí)內(nèi)容,強(qiáng)調(diào)函數(shù)的`概念及其表示方法的重要性,并提醒學(xué)生在實(shí)際問題中注意應(yīng)用函數(shù)的思想和方法。
六、作業(yè)布置
布置相關(guān)練習(xí)題,要求學(xué)生課后完成,以加深對(duì)函數(shù)概念的理解和應(yīng)用。
教學(xué)反思:
課后反思本節(jié)課的教學(xué)效果,思考如何更好地引導(dǎo)學(xué)生從實(shí)際問題中抽象出函數(shù)關(guān)系,以及如何提高學(xué)生的數(shù)學(xué)邏輯思維能力和抽象思維能力。同時(shí),也要注意關(guān)注學(xué)生的學(xué)習(xí)情況,及時(shí)給予指導(dǎo)和幫助,以促進(jìn)學(xué)生的全面發(fā)展。
高一函數(shù)課件 篇2
[教學(xué)重、難點(diǎn)]
認(rèn)識(shí)直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會(huì)每一類三角形的特點(diǎn)。
[教學(xué)準(zhǔn)備]
學(xué)生、老師剪下附頁2中的圖2。
[教學(xué)過程]
一、畫一畫,說一說
1、學(xué)生各自借助三角板或直尺分別畫一個(gè)銳角、直角、鈍角。
2、教師巡查練習(xí)情況。
3、學(xué)生展示練習(xí),說一說為什么是銳角、直角、鈍角?
二、分一分
1、小組活動(dòng);把附頁2中的圖2中的三角形進(jìn)行分類,動(dòng)手前先觀察這些三角形的特點(diǎn),然后小組討論怎樣分?
2、匯報(bào):分類的標(biāo)準(zhǔn)和方法??梢园唇莵矸?,可以按邊來分。
二、按角分類:
1、觀察第一類三角形有什么共同的'特點(diǎn),從而歸納出三個(gè)角都是銳角的'三角形是銳角三角形。
2、觀察第二類三角形有什么共同的特點(diǎn),從而歸納出有一個(gè)角是直角的三角形是直角三角形
3、觀察第三類三角形有什么共同的特點(diǎn),從而歸納出有一個(gè)角是鈍角的三角形是鈍角三角形。
三、按邊分類:
1、觀察這類三角形的邊有什么共同的特點(diǎn),引導(dǎo)學(xué)生發(fā)現(xiàn)每個(gè)三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。
2、引導(dǎo)學(xué)生發(fā)現(xiàn)有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?
四、填一填:
24、25頁讓學(xué)生辨認(rèn)各種三角形。
五、練一練:
第1題:通過“猜三角形游戲”讓學(xué)生體會(huì)到看到一個(gè)銳角,不能決定是一個(gè)銳角三角形,必須三個(gè)角都是銳角才是銳角三角形。
第2題:在點(diǎn)子圖上畫三角形第3題:剪一剪。
六、完成26頁實(shí)踐活動(dòng)。
高一函數(shù)課件 篇3
教材分析:
“指數(shù)函數(shù)”是在學(xué)生系統(tǒng)地學(xué)習(xí)了函數(shù)概念及性質(zhì),掌握了指數(shù)與指數(shù)冪的運(yùn)算性質(zhì)的基礎(chǔ)上展開研究的.作為重要的基本初等函數(shù)之一,指數(shù)函數(shù)既是函數(shù)近代定義及性質(zhì)的第一次應(yīng)用,也為今后研究其他函數(shù)提供了方法和模式,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ).指數(shù)函數(shù)在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.
學(xué)情分析:
通過初中階段的學(xué)習(xí)和高中對(duì)函數(shù)、指數(shù)的運(yùn)算等知識(shí)的系統(tǒng)學(xué)習(xí),學(xué)生對(duì)函數(shù)已經(jīng)有了一定的認(rèn)識(shí),學(xué)生對(duì)用“描點(diǎn)法”描繪出函數(shù)圖象的方法已基本掌握,已初步了解數(shù)形結(jié)合的思想.另外,學(xué)生對(duì)由特殊到一般再到特殊的數(shù)學(xué)活動(dòng)過程已有一定的體會(huì).
教學(xué)目標(biāo):
知識(shí)與技能:理解指數(shù)函數(shù)的概念和意義,能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì)并能自覺、靈活地應(yīng)用其性質(zhì)(單調(diào)性、中介值)比較大小.
過程與方法:
(1) 體會(huì)從特殊到一般再到特殊的研究問題的方法,培養(yǎng)學(xué)生觀察、歸納、猜想、概括的能力,讓學(xué)生了解數(shù)學(xué)來源于生活又在生活中有廣泛的應(yīng)用;理解并掌握探求函數(shù)性質(zhì)的一般方法;
(2) 從數(shù)和形兩方面理解指數(shù)函數(shù)的性質(zhì),體會(huì)數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想方法,提高思維的靈活性,培養(yǎng)學(xué)生直觀、嚴(yán)謹(jǐn)?shù)乃季S品質(zhì).
情感、態(tài)度與價(jià)值觀:
(1)體驗(yàn)從特殊到一般再到特殊的學(xué)習(xí)規(guī)律,認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題,激發(fā)學(xué)生自主探究的精神,在探究過程中體驗(yàn)合作學(xué)習(xí)的樂趣;
(2)讓學(xué)生在數(shù)形結(jié)合中感悟數(shù)學(xué)的統(tǒng)一美、和諧美,進(jìn)一步培養(yǎng)學(xué)生的學(xué)習(xí)興趣.
教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)
教學(xué)難點(diǎn):指數(shù)函數(shù)概念的引入及指數(shù)函數(shù)性質(zhì)的應(yīng)用
教法研究:
本節(jié)課準(zhǔn)備由實(shí)際問題引入指數(shù)函數(shù)的概念,這樣可以讓學(xué)生知道指數(shù)函數(shù)的概念來源于客觀實(shí)際,便于學(xué)生接受并有利于培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).
利用函數(shù)圖象來研究函數(shù)性質(zhì)是函數(shù)中的一個(gè)非常重要的思想,本節(jié)課將是利用特殊的指數(shù)函數(shù)圖象歸納總結(jié)指數(shù)函數(shù)的性質(zhì),這樣便于學(xué)生研究其變化規(guī)律,理解其性質(zhì)并掌握一般地探求函數(shù)性質(zhì)的方法 同時(shí)運(yùn)用現(xiàn)代信息技術(shù)學(xué)習(xí)、探索和解決問題,幫助學(xué)生理解新知識(shí)
本節(jié)課使用的教學(xué)方法有:直觀教學(xué)法、啟發(fā)引導(dǎo)法、發(fā)現(xiàn)法
教學(xué)過程:
一、問題情境 :
問題1:某種細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),以此類推,一個(gè)這樣的細(xì)胞分裂x次后,得到的細(xì)胞個(gè)數(shù)y與x的函數(shù)關(guān)系式是什么?
問題2:一種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過一年剩余質(zhì)量約是原來的 ,設(shè)該物質(zhì)的初始質(zhì)量為1,經(jīng)過 年后的剩余質(zhì)量為 ,你能寫出 之間的函數(shù)關(guān)系式嗎?
分析可知,函數(shù)的關(guān)系式分別是 與
問題3:在問題1和2中,兩個(gè)函數(shù)的自變量都是正整數(shù),但在實(shí)際問題中自變量不一定都是正整數(shù),比如在問題2中,我們除了關(guān)心1年、2年、3年后該物質(zhì)的剩余量外,還想知道3個(gè)月、一年半后該物質(zhì)的剩余量,怎么辦?
這就需要對(duì)函數(shù)的定義域進(jìn)行擴(kuò)充,結(jié)合指數(shù)概念的的擴(kuò)充,我們也可以將函數(shù)的定義域擴(kuò)充至全體實(shí)數(shù),這樣就得到了一個(gè)新的函數(shù)——指數(shù)函數(shù).
二、數(shù)學(xué)建構(gòu) :
1]定義:
一般地,函數(shù) 叫做指數(shù)函數(shù),其中 .
問題4:為什么規(guī)定 ?
問題5:你能舉出指數(shù)函數(shù)的'例子嗎?
閱讀材料(“放射性碳法”測定古物的年代):
在動(dòng)植物體內(nèi)均含有微量的放射性 ,動(dòng)植物死亡后,停止了新陳代謝, 不在產(chǎn)生,且原有的 會(huì)自動(dòng)衰變.經(jīng)過5740年( 的半衰期),它的殘余量為原來的一半.經(jīng)過科學(xué)測定,若 的原始含量為1,則經(jīng)過x年后的殘留量為 = .
這種方法經(jīng)常用來推算古物的年代.
練習(xí)1:判斷下列函數(shù)是否為指數(shù)函數(shù).
(1) (2)
(3) (4)
說明:指數(shù)函數(shù)的解析式y(tǒng)= 中, 的系數(shù)是1.
有些函數(shù)貌似指數(shù)函數(shù),實(shí)際上卻不是,如y= +k (a>0且a 1,k Z);
有些函數(shù)看起來不像指數(shù)函數(shù),實(shí)際上卻是,如y= (a>0,且a 1),因?yàn)樗梢曰癁閥= ,其中 >0,且 1
2]通過圖象探究指數(shù)函數(shù)的性質(zhì)及其簡單應(yīng)用:利用幾何畫板及其他多媒體軟件和學(xué)生一起完成
問題6:我們研究函數(shù)的性質(zhì),通常都研究哪些性質(zhì)?一般如何去研究?
函數(shù)的定義域,值域,單調(diào)性,奇偶性等;
利用函數(shù)圖象研究函數(shù)的性質(zhì)
問題7:作函數(shù)圖象的一般步驟是什么?
列表,描點(diǎn),作圖
探究活動(dòng)1:用列表描點(diǎn)法作出 , 的圖像(借助幾何畫板演示),觀察、比較這兩個(gè)函數(shù)的圖像,我們可以得到這兩個(gè)函數(shù)哪些共同的性質(zhì)?請(qǐng)同學(xué)們仔細(xì)觀察.
引導(dǎo)學(xué)生分析圖象并總結(jié)此時(shí)指數(shù)函數(shù)的性質(zhì)(底數(shù)大于1):
(1)定義域?R
(2)值域?函數(shù)的值域?yàn)?/p>
(3)過哪個(gè)定點(diǎn)?恒過 點(diǎn),即
(4)單調(diào)性? 時(shí), 為 上的增函數(shù)
(5)何時(shí)函數(shù)值大于1?小于1? 當(dāng) 時(shí), ;當(dāng) 時(shí),
問題8::是否所有的指數(shù)函數(shù)都是這樣的性質(zhì)?你能找出與剛才的函數(shù)性質(zhì)不一樣的指數(shù)函數(shù)嗎?
(引導(dǎo)學(xué)生自我分析和反思,培養(yǎng)學(xué)生的反思能力和解決問題的能力).
根據(jù)學(xué)生的發(fā)現(xiàn),再總結(jié)當(dāng)?shù)讛?shù)小于1時(shí)指數(shù)函數(shù)的相關(guān)性質(zhì)并作比較.
問題9:到現(xiàn)在,你能自制一份表格,比較 及 兩種不同情況下 的圖象和性質(zhì)嗎?
(學(xué)生完成表格的設(shè)計(jì),教師適當(dāng)引導(dǎo))
高一函數(shù)課件 篇4
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
1。獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2。提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3。提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4。發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5。提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6。具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
1。親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2。問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神。
3??茖W(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4。時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
三、教法分析:
1。選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2。通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3。在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
四、學(xué)情分析:
1、基本情況:12班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。
14班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。
2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級(jí)存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的.要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
高一函數(shù)課件 篇5
教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
課型:新授課
教學(xué)目標(biāo):(1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合的理解集合“屬于”關(guān)系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體
問題,感受集合語言的意義和作用;
教學(xué)重點(diǎn):集合的基本概念與表示方法;
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;教學(xué)過程:
一、引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。
二、新課教學(xué)
(一)集合的有關(guān)概念
1.集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識(shí)到這
些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)總體。
2.一般地,研究對(duì)象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡
稱集。
3.關(guān)于集合的元素的特征
(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
(3)集合相等:構(gòu)成兩個(gè)集合的元素完全一樣
4.元素與集合的關(guān)系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a?A(或a A)
5.常用數(shù)集及其記法
非負(fù)整數(shù)集(或自然數(shù)集),記作N
正整數(shù)集,記作N_或N+;
整數(shù)集,記作Z
有理數(shù)集,記作Q
實(shí)數(shù)集,記作R
(二)集合的表示方法
我們可以用自然語言來描述一個(gè)集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1)列舉法:把集合中的元素一一列舉出來,寫在大括號(hào)內(nèi)。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
(2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號(hào){}內(nèi)。
具體方法:在大括號(hào)內(nèi)先寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
{(x,y)|y= x2+3x+2}與{y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。
說明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個(gè)元素時(shí),不宜采用列舉法。
三、歸納小結(jié)
本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。課題:§1.2集合間的基本關(guān)系
教材分析:類比實(shí)數(shù)的大小關(guān)系引入集合的包含與相等關(guān)系
了解空集的含義
課型:新授課
教學(xué)目的:(1)了解集合之間的包含、相等關(guān)系的含義;
(2)理解子集、真子集的概念;
(3)能利用Venn圖表達(dá)集合間的關(guān)系;
(4)了解與空集的含義。
教學(xué)重點(diǎn):子集與空集的概念;用Venn圖表達(dá)集合間的關(guān)系。教學(xué)難點(diǎn):弄清元素與子集、屬于與包含之間的區(qū)別;
教學(xué)過程:
四、引入課題
1、復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填以下空白:(1)0 N;(2;(3)-1.5 R
2、類比實(shí)數(shù)的大小關(guān)系,如5;7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(宣
布課題)
五、新課教學(xué)
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素構(gòu)成的.集合,我們說集合B包含集合A;
如果集合A的任何一個(gè)元素都是集合B的元素,我們說這兩個(gè)集合有包含關(guān)系,稱集合A是集合B的子集(subset)。
記作:A?B(或B?A)
讀作:A包含于(is contained in)B,或B包含(contains)A (一)集合與集合之間的“包含”關(guān)系;
當(dāng)集合A不包含于集合B時(shí),記作B
用Venn圖表示兩個(gè)集合間的“包含”關(guān)系A(chǔ)?B(或B?A)
(二)集合與集合之間的“相等”關(guān)系;
A?B且B?A,則A=B中的元素是一樣的,因此A=B
?A?B即A=B?? B?A?
結(jié)論:
任何一個(gè)集合是它本身的子集
(三)真子集的概念
若集合A?B,存在元素x∈B且x?A,則稱集合A是集合B的真子集(proper subset)。
記作:A B(或B A)
讀作:A真包含于B(或B真包含A)
(四)空集的概念
(實(shí)例引入空集概念)
不含有任何元素的集合稱為空集(empty set),記作:?規(guī)定:空集是任何集合的子集,是任何非空集合的真子集。
(五)結(jié)論:1A?A ○2A?B,且B?C,則A?C ○
(六)例題
(1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化簡集合A={x|x-3>2},B={x|x≥5},并表示A、B的關(guān)系;
(七)歸納小結(jié),強(qiáng)化思想
兩個(gè)集合之間的基本關(guān)系只有“包含”與“相等”兩種,可類比兩個(gè)實(shí)數(shù)間的大小關(guān)系,同時(shí)還要注意區(qū)別“屬于”與“包含”兩種關(guān)系及其表示方法;
1已知集合A={x|a取值范圍。
2設(shè)集合A={○四邊形},B={平行四邊形},C={矩形},
D={正方形},試用Venn圖表示它們之間的關(guān)系。
課題:§1.3集合的基本運(yùn)算
教學(xué)目的:(1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡單集合的并集與交集;
(2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;(3)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對(duì)理解抽象概念的作用。
課型:新授課
教學(xué)重點(diǎn):集合的交集與并集、補(bǔ)集的概念;
教學(xué)難點(diǎn):集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”;
教學(xué)過程:
六、引入課題
我們兩個(gè)實(shí)數(shù)除了可以比較大小外,還可以進(jìn)行加法運(yùn)算,類比實(shí)數(shù)的加法運(yùn)算,兩個(gè)集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
七、新課教學(xué)
1.并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B
Venn圖表示:讀作:“A并B”即:A∪B={x|x∈A,或x∈B}
高一函數(shù)課件 篇6
目標(biāo):
1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會(huì)判斷一元二次方程根的存在性及根的個(gè)數(shù) ;
2.讓學(xué)生了解函數(shù)的零點(diǎn)與方程根的聯(lián)系 ;
3.讓學(xué)生認(rèn)識(shí)到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點(diǎn)中的作用 ;
4。培養(yǎng)學(xué)生動(dòng)手操作的'能力 。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):零點(diǎn)的概念及存在性的判定;
難點(diǎn):零點(diǎn)的確定。
三、復(fù)習(xí)引入
例1:判斷方程 x2-x-6=0 解的存在。
分析:考察函數(shù)f(x)= x2-x-6, 其
圖像為拋物線容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,
點(diǎn)B (0,-6)與點(diǎn)C(4,6)之間的那部分曲線
必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點(diǎn)
X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至
少有點(diǎn)X2,使得f( X2)=0,而方程至多有兩
個(gè)解,所以在(-4,0),(0,4)內(nèi)各有一解
定義:對(duì)于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù) x叫函數(shù)y=f(x)的零點(diǎn)
抽象概括
y=f(x)的圖像與x軸的交點(diǎn)的橫坐標(biāo)叫做該函數(shù)的零點(diǎn),即f(x)=0的解。
若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個(gè)零點(diǎn),即f(x)=0在 (a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解。
f(x)=0有實(shí)根(等價(jià)與y=f(x))與x軸有交點(diǎn)(等價(jià)與)y=f(x)有零點(diǎn)
所以求方程f(x)=0的根實(shí)際上也是求函數(shù)y=f(x)的零點(diǎn)
注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個(gè)實(shí)數(shù)解指出了方程f(x)=0的實(shí)數(shù)解的存在性,并不能判斷具體有多少個(gè)解;
2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實(shí)數(shù)解;
3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;
4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)
5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點(diǎn)。
四、知識(shí)應(yīng)用
例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實(shí)數(shù)解?為什么?
解:f(x)=3x-x2的圖像是連續(xù)曲線, 因?yàn)?/p>
f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,
所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點(diǎn),即f(x)=0在區(qū)間[-1,0]內(nèi)有實(shí)數(shù)解
練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒有零點(diǎn)?
例3 判定(x-2)(x-5)=1有兩個(gè)相異的實(shí)數(shù)解,且有一個(gè)大于5,一個(gè)小于2。
解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因?yàn)閒(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個(gè)交點(diǎn),在( -,2)內(nèi)也有一個(gè)交點(diǎn),所以方程式(x-2)(x-5)=1有兩個(gè)相異數(shù)解,且一個(gè)大于5,一個(gè)小于2。
練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個(gè)實(shí)根均在[-1,1]內(nèi),求m的取值范圍。
五、課后作業(yè)
p133第2,3題
高一函數(shù)課件 篇7
一、本課數(shù)學(xué)內(nèi)容的本質(zhì)、地位、作用分析
普通高中課標(biāo)教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應(yīng)用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應(yīng)用。本節(jié)課方程的根與函數(shù)的零點(diǎn),正是在這種建立和運(yùn)用函數(shù)模型的大背景下展開的。本節(jié)課的主要教學(xué)內(nèi)容是函數(shù)零點(diǎn)的定義和函數(shù)零點(diǎn)存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應(yīng)用”服務(wù)的,同時(shí)也為后續(xù)學(xué)習(xí)的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊(cè)綜合成一個(gè)整體,學(xué)好本節(jié)意義重大。
函數(shù)在數(shù)學(xué)中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識(shí)具有廣泛的聯(lián)系,而函數(shù)的零點(diǎn)就是其中的一個(gè)鏈結(jié)點(diǎn),它從不同的角度,將數(shù)與形,函數(shù)與方程有機(jī)地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點(diǎn)來研究方程,就是將局部放入整體中研究,進(jìn)而對(duì)整體和局部都有一個(gè)更深層次的理解,并學(xué)會(huì)用聯(lián)系的觀點(diǎn)解決問題,為后面函數(shù)與不等式和數(shù)列等其他知識(shí)的聯(lián)系奠定基礎(chǔ)。
二、教學(xué)目標(biāo)分析
本節(jié)內(nèi)容包含三大知識(shí)點(diǎn):
1、函數(shù)零點(diǎn)的定義;
2、方程的根與函數(shù)零點(diǎn)的等價(jià)關(guān)系;
3、零點(diǎn)存在性定理。
結(jié)合本節(jié)課引入三大知識(shí)點(diǎn)的方法,設(shè)定本節(jié)課的知識(shí)與技能目標(biāo)如下:
1.結(jié)合方程根的幾何意義,理解函數(shù)零點(diǎn)的定義;
2.結(jié)合零點(diǎn)定義的探究,掌握方程的實(shí)根與其相應(yīng)函數(shù)零點(diǎn)之間的等價(jià)關(guān)系;
3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間的方法.
本節(jié)課是學(xué)生在學(xué)習(xí)了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識(shí)的基礎(chǔ)上,通過對(duì)特殊函數(shù)圖象的分析進(jìn)行展開的,是培養(yǎng)學(xué)生“化歸與轉(zhuǎn)化思想”,“數(shù)形結(jié)合思想”,“函數(shù)與方程思想”的優(yōu)質(zhì)載體。
結(jié)合本節(jié)課教學(xué)主線的設(shè)計(jì),設(shè)定本節(jié)課的過程與方法目標(biāo)如下:
1.通過化歸與轉(zhuǎn)化思想的引導(dǎo),培養(yǎng)學(xué)生從已有認(rèn)知結(jié)構(gòu)出發(fā),尋求解決棘手問題方法的習(xí)慣;
2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學(xué)生主動(dòng)應(yīng)用數(shù)學(xué)思想的意識(shí);
3.通過習(xí)題與探究知識(shí)的相關(guān)性設(shè)置,引導(dǎo)學(xué)生深入探究得出判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間的方法;
4.通過對(duì)函數(shù)與方程思想的不斷剖析,促進(jìn)學(xué)生對(duì)知識(shí)靈活應(yīng)用的能力。
由于本節(jié)課將以教師引導(dǎo),學(xué)生探究為主體形式,故設(shè)定本節(jié)課的'情感、態(tài)度與價(jià)值觀目標(biāo)如下:
1.讓學(xué)生體驗(yàn)化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問題時(shí)的意義與價(jià)值;
2.培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣。
3.使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂趣與成功感。
三、教學(xué)問題診斷
學(xué)生具備的認(rèn)知基礎(chǔ):
1.基本初等函數(shù)的圖象和性質(zhì);
2.一元二次方程的根和相應(yīng)函數(shù)圖象與x軸的聯(lián)系;
3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識(shí)。
學(xué)生欠缺的實(shí)際能力:
1.主動(dòng)應(yīng)用數(shù)形結(jié)合思想解決問題的意識(shí)還不強(qiáng);
2.將未知問題已知化,將復(fù)雜問題簡單化的化歸意識(shí)淡薄;
3.從直觀到抽象的概括總結(jié)能力還不夠;
4.概念的內(nèi)涵與外延的探究意識(shí)有待提高。
對(duì)本節(jié)課的教學(xué),教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來引入函數(shù)零點(diǎn)的。這樣處理,主要是想讓學(xué)生在原有二次函數(shù)的認(rèn)知基礎(chǔ)上,使其知識(shí)得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡單的函數(shù)零點(diǎn),再來理解其他復(fù)雜的函數(shù)零點(diǎn)就會(huì)容易一些。但學(xué)生對(duì)如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過程使學(xué)生感到平淡,激發(fā)不起他們的興趣,他們對(duì)零點(diǎn)的理解也只會(huì)浮于表面,也無法使其體會(huì)引入函數(shù)零點(diǎn)的必要性,理解不了方程根存在的本質(zhì)原因是零點(diǎn)的存在。
教材是通過由直觀到抽象的過程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)的一種條件的,如果不能有效地對(duì)該過程進(jìn)行引導(dǎo),容易出現(xiàn)學(xué)生被動(dòng)接受,盲目記憶的結(jié)果,而喪失了對(duì)學(xué)生應(yīng)用數(shù)學(xué)思想方法的意識(shí)進(jìn)行培養(yǎng)的機(jī)會(huì)。
教材中零點(diǎn)存在性定理只表述了存在零點(diǎn)的條件,但對(duì)存在零點(diǎn)的個(gè)數(shù)并未多做說明,這就要求教師對(duì)該定理的內(nèi)涵和外延要有清晰的把握,引導(dǎo)學(xué)生探究出只存在一個(gè)零點(diǎn)的條件,否則學(xué)生對(duì)定理的內(nèi)容很容易心存疑慮。
四、本節(jié)課的教法特點(diǎn)以及預(yù)期效果分析
本節(jié)課教法的幾大特點(diǎn)總結(jié)如下:
1.以問題為主線貫穿始終;
2.精心設(shè)置引導(dǎo)性的語言放手讓學(xué)生探究;
3.注重在引導(dǎo)學(xué)生探究問題解法的過程中滲透數(shù)學(xué)思想;
4.在探究過程中引入新知識(shí)點(diǎn),在引入新知識(shí)點(diǎn)后適時(shí)歸納總結(jié),進(jìn)行探究階段性成果的應(yīng)用。
由于所設(shè)置的主線問題具有很高的探究價(jià)值,所以預(yù)期學(xué)生熱情會(huì)很高,積極性調(diào)動(dòng)起來,那整節(jié)課才能活起來;
由于為了更好地組織學(xué)生探究所設(shè)置的引導(dǎo)性語言,重在去挖掘?qū)W生內(nèi)心真實(shí)的想法和他們最真實(shí)體會(huì)到的困難,所以通過學(xué)生活動(dòng)會(huì)更多地暴露他們?cè)诨A(chǔ)知識(shí)掌握方面的缺憾,免不了要隨時(shí)糾正對(duì)過往知識(shí)的錯(cuò)誤理解;
因?yàn)樵谔骄窟^程中不斷滲透數(shù)學(xué)思想,學(xué)生對(duì)親身經(jīng)歷的解題方法就會(huì)有更深的體會(huì),主動(dòng)應(yīng)用數(shù)學(xué)思想的意識(shí)在上升,對(duì)于主線問題也應(yīng)該可以迎刃而解;
因?yàn)樵谔骄窟^程中引入新知識(shí)點(diǎn),學(xué)生對(duì)新知識(shí)產(chǎn)生的必要性會(huì)有更深刻的體會(huì)和認(rèn)識(shí),同時(shí)在新知識(shí)產(chǎn)生后,又適時(shí)地加以應(yīng)用,學(xué)生對(duì)新知識(shí)的應(yīng)用能力不斷提高。
高一函數(shù)課件 篇8
教學(xué)目標(biāo)
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法。
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性。
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想。
3.通過對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的'圖像。
二、重點(diǎn)難點(diǎn)分析
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí)。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn)。
三、教法建議
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個(gè)過程中對(duì)一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來。
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
高一函數(shù)課件 篇9
教學(xué)目標(biāo):
知識(shí)與技能:理解函數(shù)的概念,掌握函數(shù)的表示方法,能識(shí)別函數(shù)關(guān)系,理解函數(shù)的定義域、值域等基本概念。
過程與方法:通過實(shí)例分析,培養(yǎng)學(xué)生分析問題、解決問題的能力,提高學(xué)生的抽象思維能力和邏輯推理能力。
情感、態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣和熱愛,提高學(xué)生的自信心和團(tuán)結(jié)協(xié)作精神。
教學(xué)重點(diǎn):
函數(shù)的定義及其表示方法,函數(shù)的定義域和值域。
教學(xué)難點(diǎn):
函數(shù)概念的理解,特別是從實(shí)際問題中抽象出函數(shù)關(guān)系。
教學(xué)過程:
一、導(dǎo)入新課
通過日常生活中的實(shí)例(如氣溫隨時(shí)間的變化、購物金額隨商品數(shù)量的變化等),引導(dǎo)學(xué)生感受變量之間的關(guān)系,為引入函數(shù)概念做鋪墊。
二、新課講解
函數(shù)的概念
通過實(shí)例,引導(dǎo)學(xué)生理解函數(shù)是一個(gè)特殊的對(duì)應(yīng)關(guān)系,它描述了兩個(gè)變量之間的'依存關(guān)系。給出函數(shù)的定義,并解釋定義中的各個(gè)要素(定義域、值域、對(duì)應(yīng)法則)。
函數(shù)的表示方法
介紹函數(shù)的三種表示方法:解析法、列表法和圖象法。通過具體例子,讓學(xué)生理解并掌握每種表示方法的特點(diǎn)和應(yīng)用場景。
函數(shù)的定義域和值域
結(jié)合實(shí)例,講解函數(shù)的定義域和值域的概念。引導(dǎo)學(xué)生通過解析式或圖象確定函數(shù)的定義域和值域。
三、鞏固練習(xí)
給出一些實(shí)際問題的情境,讓學(xué)生嘗試抽象出函數(shù)關(guān)系,并確定函數(shù)的定義域和值域。
給出一些函數(shù)的解析式或圖象,讓學(xué)生判斷其是否為函數(shù),并說明理由。
四、課堂小結(jié)
總結(jié)本節(jié)課的主要內(nèi)容,強(qiáng)調(diào)函數(shù)概念的重要性,并布置課后作業(yè)。
五、課后作業(yè)
完成課本上的相關(guān)習(xí)題,鞏固本節(jié)課所學(xué)內(nèi)容。
收集一些生活中的例子,嘗試用函數(shù)來描述其中的變量關(guān)系。
教學(xué)反思:
本節(jié)課通過實(shí)例引入函數(shù)概念,使抽象的概念具體化,有助于學(xué)生的理解。在鞏固練習(xí)環(huán)節(jié),通過實(shí)際問題的解決,培養(yǎng)了學(xué)生的應(yīng)用能力和解決問題的能力。但部分學(xué)生在理解函數(shù)概念時(shí)仍存在困難,需要在后續(xù)教學(xué)中加強(qiáng)引導(dǎo)和練習(xí)。同時(shí),也要注意培養(yǎng)學(xué)生的抽象思維能力和邏輯推理能力,為后續(xù)的數(shù)學(xué)學(xué)習(xí)打下基礎(chǔ)。
高一函數(shù)課件 篇10
教學(xué)目標(biāo):
掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會(huì)化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識(shí).
教學(xué)重點(diǎn):
二倍角公式的推導(dǎo)及簡單應(yīng)用.
教學(xué)難點(diǎn):
理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).
教學(xué)過程:
Ⅰ.課題導(dǎo)入
前一段時(shí)間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請(qǐng)同學(xué)們?cè)囃?
先回憶和角公式
sin(α+β)=sinαcosβ+cosαsinβ
當(dāng)α=β時(shí),sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
當(dāng)α=β時(shí)cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
當(dāng)α=β時(shí),tan2α=2tanα1-tan2α
Ⅱ.講授新課
同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α
同學(xué)們是否也考慮到了呢?
另外運(yùn)用這些公式要注意如下幾點(diǎn):
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時(shí)才成立,否則不成立(因?yàn)楫?dāng)α=π2 +kπ,k∈Z時(shí),tanα的值不存在;當(dāng)α=π4 +kπ2 ,k∈Z時(shí)tan2α的值不存在).
當(dāng)α=π2 +kπ(k∈Z)時(shí),雖然tanα的`值不存在,但tan2α的值是存在的,這時(shí)求tan2α的值可利用誘導(dǎo)公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情況下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當(dāng)且僅當(dāng)α=kπ(k∈Z)時(shí),sin2α=2sinα=0成立].
同樣在一般情況下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不僅可運(yùn)用于將2α作為α的2倍的情況,還可以運(yùn)用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.
高一函數(shù)課件 篇11
一、說課內(nèi)容:
蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計(jì):
1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?
【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課
函數(shù)是研究兩個(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?
解:s=πr(r>0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對(duì)二次函數(shù)概念的理解:
1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。
(四)鞏固練習(xí)
1.已知一個(gè)直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時(shí),求這個(gè)直角三角形的面積;
(2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?
【設(shè)計(jì)意圖】簡單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3
(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;
(2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?
【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來。
4. 籬笆墻長30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。
(五)拓展延伸
1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.
【設(shè)計(jì)意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。
2.確定下列函數(shù)中k的值
(1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的.值一定是______
(2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______
【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.
(六) 小結(jié)思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。
(七) 作業(yè)布置:
必做題:
1. 正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?
2. 在長20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
選做題:
1.已知函數(shù) 是二次函數(shù),求m的值。
2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象
【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
五、教學(xué)設(shè)計(jì)思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵(lì)表揚(yáng)的特色
滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)