幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學(xué)必修二課件

發(fā)布時間:2023-06-27 高中數(shù)學(xué)必修課件 高中數(shù)學(xué)課件

高中數(shù)學(xué)必修二課件。

根據(jù)教學(xué)要求,教師需要在上課前準(zhǔn)備好教案課件,因此教師會認(rèn)真規(guī)劃每份教案課件的重點難點。教案是教育教學(xué)改革的重要指引,你是否正在尋找合適的教案課件?現(xiàn)在就跟隨幼兒教師教育網(wǎng)的腳步一起探索“高中數(shù)學(xué)必修二課件”的故事吧,歡迎閱讀本文!

高中數(shù)學(xué)必修二課件(篇1)

進(jìn)一步熟悉正、余弦定理內(nèi)容,能熟練運用余弦定理、正弦定理解答有關(guān)問題,如判斷三角形的形狀,證明三角形中的三角恒等式.

一、復(fù)習(xí)準(zhǔn)備:

1. 寫出正弦定理、余弦定理及推論等公式.

2. 討論各公式所求解的三角形類型.

二、講授新課:

1. 教學(xué)三角形的解的討論:

② 練習(xí):在△ABC中,已知下列條件,判斷三角形的解的情況.

2. 教學(xué)正弦定理與余弦定理的活用:

① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦.

分析:已知條件可以如何轉(zhuǎn)化?→ 引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角.

② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.

分析:由三角形的什么知識可以判別? → 求最大角余弦,由符號進(jìn)行判斷

分析:如何將邊角關(guān)系中的邊化為角? →再思考:又如何將角化為邊?

3. 小結(jié):三角形解的情況的討論;判斷三角形類型;邊角關(guān)系如何互化.

高中數(shù)學(xué)必修二課件(篇2)

本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實際問題。

數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。

本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全”等。

教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。

加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。

本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的`問題?!边@樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認(rèn)識,同時使新知識建立在已有知識的堅實基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。

《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,

位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。

在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實際問題中去,對所學(xué)數(shù)學(xué)知識的實際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實際問題。

1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個定理解決有關(guān)的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應(yīng)該鼓勵學(xué)生提出自己的解決辦法,并對于不同的方法進(jìn)行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學(xué)生設(shè)計應(yīng)用的程序,得到在實際中可以直接應(yīng)用的算法。

2.適當(dāng)安排一些實習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達(dá)實習(xí)過程和實習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實踐能力。教師要注意對于學(xué)生實習(xí)作業(yè)的指導(dǎo),包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。

高中數(shù)學(xué)必修二課件(篇3)

設(shè)計理念:

本文選自《宋史》,是一篇文筆凝練、較易理解的文言文,建議學(xué)生用自主合作的學(xué)習(xí)方式,借助書下注釋和工具書疏通全文大意,領(lǐng)會文章的主旨,在了解名人事跡的過程中受到人格的熏陶,促進(jìn)積極向上的價值觀、人生觀的形成。這也是《語文課程標(biāo)準(zhǔn)》對閱讀簡易文言文的要求。

教學(xué)對象分析:

本班級共有50名,其中男生27人,女生23人,全部為住讀生。優(yōu)生約占5%,基礎(chǔ)較差的約占10%。從班級整體的知識情況看:他們的語文閱讀能力和作文能力較差,因此,在教學(xué)的過程中必須重視學(xué)生的語文閱讀能力和作文能力的培養(yǎng)。

教學(xué)內(nèi)容分析:

本文選自《宋史》,主要寫了兩件事:刻苦讀書和推薦人才,表現(xiàn)了一個中心:趙普能以天下事為已任。課文刻畫人物,善于運用細(xì)節(jié)描寫的方法,敘事簡潔沒有冗筆。

教學(xué)目標(biāo):

1、?準(zhǔn)確翻譯全文,注意重點字詞,提高文言文的閱讀能力。

2、?學(xué)習(xí)本文敘事簡潔、運用細(xì)節(jié)描寫的方法。

3、?了解更多學(xué)習(xí)刻苦、以天下事為已任的人物的故事。

4、?結(jié)合課文內(nèi)容,認(rèn)識趙普的勤奮學(xué)習(xí)、學(xué)以致用、為國薦材的精神。

教學(xué)重點:

1、準(zhǔn)確翻譯全文,注意重點字詞,背誦全文。

2、運用細(xì)節(jié)描寫人物、敘事簡潔的方法。

教學(xué)過程:

一、導(dǎo)入:毛主席在《沁園春.雪》中稱贊“秦皇漢武、唐宗宋祖、成吉思汗”是中國歷史上的英雄人物,當(dāng)我們在評論他們的功過得失時,我們常常發(fā)現(xiàn)他們的身邊總有賢臣相隨。同學(xué)們能從歷史長廊中舉出一些賢臣的例子嗎?

二、學(xué)生舉例,教師補(bǔ)充,引出趙普。

趙普,北宋大臣。后周時趙匡胤的幕僚,策劃陳橋兵變,幫助趙匡胤奪取政權(quán),后任宰相。太宗時又兩次任宰相。他少時為吏,讀書不多。趙普曾經(jīng)對宋太宗(趙匡義)說過這么一段話:“臣平生所知,無不出此。昔以其(指《論語》)半輔太祖(趙匡胤)定天下,今欲以其半輔陛下致太平?!啊?/p>

三、學(xué)生齊讀課文,教師再范讀全文,最后請個別學(xué)生朗讀。

刻苦讀書與推薦人才。

教師提醒學(xué)生注意古今異義、固定句式(“九字法”:增、刪、留、換、移、固、意、直和定)

五、細(xì)讀課文,思索:讀完課文后你弄懂了哪些問題?(學(xué)生問答后,師出示以下參考題):

1、宋太祖勸趙普讀書的原因是什么?(WWw.HDh765.COm 好讀后)

趙普年輕時熟悉政事的處理,而缺少學(xué)問。

2、讀書給趙普帶來什么好處?

在處理政務(wù)的時候能夠很果斷。

3、趙普晚年時“手不釋卷”,請寫出兩到三個相關(guān)成語。

鑿壁借光、囊螢讀書、孜孜不倦等。

4、課文告訴我們一個什么道理?

多讀書讀好書能增長知識,提高能力。

5、通過文中所寫的兩件事,你認(rèn)趙普是個怎樣的人?

剛毅果斷、鎮(zhèn)定從容、能以天下事為己任、具有超人的毅力、堅強(qiáng)的意志。

6、本文刻畫人物善于運用細(xì)節(jié)描寫,試舉例說明。

“闔戶啟篋取書”、“普顏色不變”、“補(bǔ)綴舊紙,復(fù)奏如初”。

六、自由朗讀課文,鞏固知識。

七、過渡語:古往今來,“刻苦讀書”和“以天下事為已任”的人和故事層出不窮,你能試著舉出一兩個嗎?并談?wù)勊麄儗δ愠砷L的影響。

2、完成課后習(xí)題并抄寫文中自己認(rèn)為好的語段。

3、收集刻苦學(xué)習(xí)的名言、名句、故事。

十、教學(xué)評價與反思:

1、由于上期在教學(xué)《幼時記趣》、《三峽》等古詩文時,我注意要求學(xué)生讀準(zhǔn)文言文的停頓、重音等知識,同時向?qū)W生講解了古文翻譯的一些基本方法,因此,

本學(xué)期在講《趙普》一文時,學(xué)生基本能準(zhǔn)確朗讀課文的節(jié)奏,基本能回憶起文言文翻譯的'一些注意事項,并運用到重點字詞句的翻譯中。

2、從本學(xué)期開始,我每周向?qū)W生提供一至兩篇淺顯的文言文,并分層進(jìn)行練習(xí),讓學(xué)生培養(yǎng)一定的文言文閱讀能力。

3、本課的教學(xué),我改變了上期精講全文字詞的做法,實行重點突破,并利用媒體課件展示我的做法,讓學(xué)生抓住重點進(jìn)行學(xué)習(xí),效果明顯。

4、《語文課程標(biāo)準(zhǔn)》指出,語文課程應(yīng)是開放而有活力的。初中學(xué)生性格較為叛逆,也初步具備了一定的獨立辨別能力,因此,我放開話題,讓學(xué)生挑戰(zhàn)課

文,以激發(fā)他們研讀文言文的興趣。說實話,學(xué)生有幾個問題我備課時沒準(zhǔn)備,讓我措手不及,但因為我積極引導(dǎo)學(xué)生在教材的“頭”上“動土”,沉悶的課堂被

激活了,學(xué)生悄悄融入語文學(xué)習(xí)的“軌道”之中。確實,課堂“動”起來了,教學(xué)也就“美”起來了!

高中數(shù)學(xué)必修二課件(篇4)

教學(xué)目的:

(1)明確函數(shù)的三種表示方法;

(2)在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);

(3)通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用;

(4)糾正認(rèn)為“y=f(x)”就是函數(shù)的解析式的片面錯誤認(rèn)識.

教學(xué)難點:根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),什么才算“恰當(dāng)”?分段函數(shù)的表示及其圖象.

(2)圖象法;

例1.某種筆記本的單價是5元,買x (x∈{1,2,3,4,5})個筆記本需要y元.試用三種表示法表示函數(shù)y=f(x) .

分析:注意本例的設(shè)問,此處“y=f(x)”有三種含義,它可以是解析表達(dá)式,可以是圖象,也可以是對應(yīng)值表.

注意:

函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù);

列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.

例2.下表是某校高一(1)班三位同學(xué)在高一學(xué)年度幾次數(shù)學(xué)測試的成績及班級及班級平均分表:

第一次 第二次 第三次 第四次 第五次 第六次 王 偉 98 87 91 92 88 95 張 城 90 76 88 75 86 80 趙 磊 68 65 73 72 75 82 班平均分 88.2 78.3 85.4 80.3 75.7 82.6 請你對這三們同學(xué)在高一學(xué)年度的數(shù)學(xué)學(xué)習(xí)情況做一個分析.

分析:本例應(yīng)引導(dǎo)學(xué)生分析題目要求,做學(xué)情分析,具體要分析什么?怎么分析?借助什么工具?

注意:

本例為了研究學(xué)生的學(xué)習(xí)情況,將離散的點用虛線連接,這樣更便于研究成績的變化特點;

本例能否用解析法?為什么?

拓展練習(xí):

任意畫一個函數(shù)y=f(x)的圖象,然后作出y=|f(x)| 和 y=f (|x|) 的圖象,并嘗試簡要說明三者(圖象)之間的關(guān)系.

例4.某市郊空調(diào)公共汽車的票價按下列規(guī)則制定:

(1) 乘坐汽車5公里以內(nèi),票價2元;

(2) 5公里以上,每增加5公里,票價增加1元(不足5公里按5公里計算).

已知兩個相鄰的公共汽車站間相距約為1公里,如果沿途(包括起點站和終點站)設(shè)20個汽車站,請根據(jù)題意,寫出票價與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.

分析:本例是一個實際問題,有具體的實際意義.根據(jù)實際情況公共汽車到站才能停車,所以行車?yán)锍讨荒苋≌麛?shù)值.

如果某空調(diào)汽車運行路線中設(shè)20個汽車站(包括起點站和終點站),那么汽車行駛的里程約為19公里,所以自變量x的取值范圍是{x∈N| x≤19}.

由空調(diào)汽車票價制定的規(guī)定,可得到以下函數(shù)解析式:

根據(jù)這個函數(shù)解析式,可畫出函數(shù)圖象,如下圖所示:

注意:

本例具有實際背景,所以解題時應(yīng)考慮其實際意義;

本題可否用列表法表示函數(shù),如果可以,應(yīng)怎樣列表?

實踐與拓展:

請你設(shè)計一張乘車價目表,讓售票員和乘客非常容易地知道任意兩站之間的票價.(可以實地考查一下某公交車線路)

高中數(shù)學(xué)必修二課件(篇5)

3.數(shù)列{an}的前n項和Sn=n2-7n-8,

4.等差數(shù)列{an}的公差為,S100=145,則a1+a3 + a5 + …+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為的等差數(shù)列,則|m-n|=

7.四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù)

8.在等差數(shù)列{an}中,a1=20,前n項和為Sn,且S10= S15,求當(dāng)n為何值時,Sn有最大值,并求出它的最大值

0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)設(shè)f(x)的圖象的頂點的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列

(2設(shè)f(x)的圖象的頂點到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項和sn.

11 .購買一件售價為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個月第1次付款,再過1個月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計算(上月利息要計入下月本金),那么每期應(yīng)付款多少?(精確到1元)

函數(shù)關(guān)系式是f(t)=

注:對于分段函數(shù)型的應(yīng)用題,應(yīng)注意對變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過比較,確定最大值

棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質(zhì):

(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

一)、課內(nèi)重視聽講,課后及時復(fù)習(xí)。

新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。

二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。

要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。

三)、調(diào)整心態(tài),正確對待考試。

首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。

由此可見,要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點,使自己進(jìn)入數(shù)學(xué)的廣闊天地中去。

yJS21.com更多精選幼師資料閱讀

高中數(shù)學(xué)必修二課件(精華4篇)


高中數(shù)學(xué)必修二課件 篇1

一、圓及圓的相關(guān)量的定義

1、平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

2、圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

3、頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

4、過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5、直線與圓有3種位置關(guān)系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

6、兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

7、在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

二、有關(guān)圓的字母表示方法

圓--⊙;半徑—r;弧--⌒;直徑—d

扇形弧長/圓錐母線—l;周長—C;面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個)

1、點P與圓O的位置關(guān)系(設(shè)P是一點,則PO是點到圓心的距離):

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

2、圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

3、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

4、在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別等等。

5、一條弧所對的圓周角等于它所對的圓心角的一半。

6、直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

7、不在同一直線上的3個點確定一個圓。

8、一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

9、直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):

AB與⊙O相離,PO>r;AB與⊙O相切,PO=r。

10、圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

11、圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):外離P>R+r;外切P=R+r;相交R-r

三、有關(guān)圓的計算公式

1、圓的周長C=2πr=πd

2、圓的面積S=s=πr2

3、扇形弧長l=nπr/180

4、扇形面積S=nπr2/360=rl/2

5、圓錐側(cè)面積S=πrl

四、圓的方程

1、圓的標(biāo)準(zhǔn)方程

在平面直角坐標(biāo)系中,以點O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是:

(x-a)^2+(y-b)^2=r^2

2、圓的一般方程

把圓的標(biāo)準(zhǔn)方程展開,移項,合并同類項后,可得圓的一般方程是:

x^2+y^2+Dx+Ey+F=0

和標(biāo)準(zhǔn)方程對比,其實D=-2a,E=-2b,F=a^2+b^2

相關(guān)知識:圓的離心率e=0。在圓上任意一點的曲率半徑都是r。

五、圓與直線的位置關(guān)系判斷

平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

討論如下2種情況:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0。

利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:

如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交

如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

(2)如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸)

將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

當(dāng)x=-C/Ax2時,直線與圓相離

當(dāng)x1

當(dāng)x=-C/A=x1或x=-C/A=x2時,直線與圓相切

圓的定理:

1、不在同一直線上的三點確定一個圓。

2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論

1、①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

2、圓的兩條平行弦所夾的弧相等

3、圓是以圓心為對稱中心的中心對稱圖形

4、圓是定點的距離等于定長的點的集合

5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

6、圓的外部可以看作是圓心的距離大于半徑的點的集合

7、同圓或等圓的半徑相等

8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

11、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

12、①直線L和⊙O相交d

②直線L和⊙O相切d=r

③直線L和⊙O相離d>r

13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

18、圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角

19、如果兩個圓相切,那么切點一定在連心線上

20、①兩圓外離d>R+r

②兩圓外切d=R+r

③兩圓相交R-rr)

④兩圓內(nèi)切d=R-r(R>r)

⑤兩圓內(nèi)含dr)

21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

22、定理:把圓分成n(n≥3):

(1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

(2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

26、正n邊形的面積Sn=pnrn/2,p表示正n邊形的周長

27、正三角形面積√3a/4,a表示邊長

28、如果在一個頂點周圍有k個正n邊形的角,這些角的和應(yīng)為360°

29、弧長計算公式:L=n兀R/180

30、扇形面積公式:S扇形=n兀R^2/360=LR/2

31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

35、弧長公式l=a*r,a是圓心角的弧度數(shù)r>0,扇形面積公式s=1/2*l*r

高中數(shù)學(xué)必修二課件 篇2

空間兩條直線只有三種位置關(guān)系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp??臻g向量法。

兩異面直線間距離:公垂線段(有且只有一條)esp空間向量法。

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;

(2)沒有公共點——平行或異面

直線和平面的位置關(guān)系:

直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行。

①直線在平面內(nèi)——有無數(shù)個公共點。

②直線和平面相交——有且只有一個公共點。

直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

高中數(shù)學(xué)必修二課件 篇3

一、直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。

當(dāng) 時, ; 當(dāng) 時, ; 當(dāng) 時, 不存在。

②過兩點的直線的斜率公式:

注意下面四點:(1)當(dāng) 時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。

(3)直線方程

①點斜式: 直線斜率k,且過點

注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1。

當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

②斜截式: ,直線斜率為k,直線在y軸上的截距為b

③兩點式: ( )直線兩點 ,

④截矩式:

其中直線 與 軸交于點 ,與 軸交于點 ,即 與 軸、 軸的截距分別為 。

⑤一般式: (A,B不全為0)

注意:各式的適用范圍 特殊的方程如:

平行于x軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));

(5)直線系方程:即具有某一共同性質(zhì)的直線

(一)平行直線系

平行于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

(二)垂直直線系

垂直于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

(三)過定點的直線系

(?。┬甭蕿閗的直線系: ,直線過定點 ;

(ⅱ)過兩條直線 , 的交點的直線系方程為

( 為參數(shù)),其中直線 不在直線系中。

(6)兩直線平行與垂直

當(dāng) , 時,;

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

(7)兩條直線的`交點

相交

交點坐標(biāo)即方程組 的一組解。

方程組無解 ; 方程組有無數(shù)解 與 重合

(8)兩點間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個點,

(9)點到直線距離公式:一點 到直線 的距離

(10)兩平行直線距離公式

在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進(jìn)行求解。

二、圓的方程

1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(1)標(biāo)準(zhǔn)方程 ,圓心 ,半徑為r;

(2)一般方程

當(dāng) 時,方程表示圓,此時圓心為 ,半徑為

當(dāng) 時,表示一個點; 當(dāng) 時,方程不表示任何圖形。

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

3、直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2

4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設(shè)圓 ,

兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當(dāng) 時兩圓外離,此時有公切線四條;

當(dāng) 時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

當(dāng) 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng) 時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

當(dāng) 時,兩圓內(nèi)含; 當(dāng) 時,為同心圓。

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點

三、立體幾何初步

1、柱、錐、臺、球的結(jié)構(gòu)特征

(1)棱柱:

幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

俯視圖(從上向下)

注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

4、柱體、錐體、臺體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和。

(2)特殊幾何體表面積公式(c為底面周長,h為高, 為斜高,l為母線)

(3)柱體、錐體、臺體的體積公式

(4)球體的表面積和體積公式:V = ; S =

4、空間點、直線、平面的位置關(guān)系

公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

應(yīng)用: 判斷直線是否在平面內(nèi)

用符號語言表示公理1:

公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a。

符號語言:

公理2的作用:

①它是判定兩個平面相交的方法。

②它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點。

③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。

公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

公理3及其推論作用:

①它是空間內(nèi)確定平面的依據(jù)

②它是證明平面重合的依據(jù)

公理4:平行于同一條直線的兩條直線互相平行

空間直線與直線之間的位置關(guān)系

① 異面直線定義:不同在任何一個平面內(nèi)的兩條直線

② 異面直線性質(zhì):既不平行,又不相交。

③ 異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

求異面直線所成角步驟:

A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。

B、證明作出的角即為所求角

C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無數(shù)個公共點.

三種位置關(guān)系的符號表示:a α a∩α=A a‖α

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

相交——有一條公共直線。α∩β=b

5、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

線線平行 線面平行

線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行 線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個平面平行的判定定理

(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。

(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質(zhì)定理

(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

7、空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

(2)垂直關(guān)系的判定和性質(zhì)定理

①線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

②面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

9、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規(guī)定為 。

②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

(2)直線和平面所成的角

①平面的平行線與平面所成的角:規(guī)定為 。

②平面的垂線與平面所成的角:規(guī)定為 。

③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

在解題時,注意挖掘題設(shè)中兩個主要信息:

(1)斜線上一點到面的垂線;

(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

(3)二面角和二面角的平面角

①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

④求二面角的方法

定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

高中數(shù)學(xué)必修二課件 篇4

棱錐

棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的的性質(zhì):

(1)側(cè)棱交于一點。側(cè)面都是三角形

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質(zhì):

(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個特殊的直角三角形

esp:

a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高中數(shù)學(xué)必修二課件精選十五篇


一般給學(xué)生們上課之前,老師就早早地準(zhǔn)備好了教案課件,因此就需要老師自己花點時間去寫。教案課件是老師的重要參考,從哪些角度去準(zhǔn)備寫自己的教案課件呢?下面由幼兒教師教育網(wǎng)的編輯給大家來分享“高中數(shù)學(xué)必修二課件”,請將本網(wǎng)頁加入您常用的鏈接列表中!

高中數(shù)學(xué)必修二課件 篇1

學(xué)習(xí)目標(biāo):1、能說出作者托石榴之物,言頌揚我們民族美好情操之志的文章主旨。

2、學(xué)習(xí)作者狀物的形神兼?zhèn)洹?/strong>

3、品位本文形象生動、準(zhǔn)確凝練的語言。

課前學(xué)習(xí):1、積累文中的字詞,劃出文中描寫生動的地方。

1 創(chuàng)設(shè)情景導(dǎo)入新課:出示石榴的圖片,請同學(xué)用自己的語言描繪石榴花的外型及自己的感受。導(dǎo)入新課。? 觀察、思考、交流

2 要求學(xué)生自讀課文,解決生詞,并嘗試歸納各段段意。 自由朗讀,板書生字詞和各段段意。

3 指導(dǎo)學(xué)生準(zhǔn)確概括段意的方法,如抓住中心句,或關(guān)鍵字詞。 思考,作批注

5 問題設(shè)計:根據(jù)各段段意,你能理出作者的寫作思路嗎?(包括描寫順序) 交流、評價

1 問題創(chuàng)設(shè):出示對石榴的介紹,引導(dǎo)學(xué)生與課文語言進(jìn)行對比。教師提供語言賞析示范。 比較閱讀,品味語言,根據(jù)示范作批注。? 石榴,一名“安石榴”。石榴科。落葉灌木或小喬木。有針狀枝,葉對生,倒卵形或長橢圓形,無毛。夏季開花,花有結(jié)實花和不結(jié)實花兩種,常呈橙紅色,亦有黃色或白色。

2 組織交流、評價,引導(dǎo)學(xué)生也要注意說明語言準(zhǔn)確的特點。 組內(nèi)交流,討論

3?? 問題設(shè)計:作者為何對石榴花獨有情鐘?請找出文中的關(guān)鍵句并結(jié)合寫作背景談?wù)効捶āT趯W(xué)生回答的基礎(chǔ)上明確課文托物言志的主旨。 劃出文中的關(guān)鍵句。補(bǔ)充寫作背景。

1 布置任務(wù):下面是兩個寓理于物的例句,請你另選一件物品(例如“鏡子”、“風(fēng)箏”……),寫一個既符合物品特點,又包含生活道理的句子。 練習(xí)、交流 例句:?(1)蠟燭:站得不端正的,必然淚多命短。?(2)月亮:正因為有圓有缺,才使人不感到乏味。?鏡子:?風(fēng)箏:

高中數(shù)學(xué)必修二課件 篇2

課題

1.2.1投影與三視圖

課型

新課

教學(xué)目標(biāo)

1.了解中心投影和平行投影的概念;

2.能夠判斷簡單的空間幾何體(柱、錐、臺、球及其簡單組合體)的三視圖,能夠根據(jù)三視圖描述基本幾何體或?qū)嵨镌停?/p>

3.簡單組合體與其三視圖之間的相互轉(zhuǎn)化。

教學(xué)過程

教學(xué)內(nèi)容

備注

一、

自主學(xué)習(xí)

1.照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對線條畫法的基本原理是一個幾何問題,我們需要學(xué)習(xí)這方面的知識。

2.在建筑、機(jī)械等工程中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術(shù)上這也是一個幾何問題,你想知道這方面的基礎(chǔ)知識嗎?

二、

質(zhì)疑提問

下圖中的手影游戲,你玩過嗎?

光是直線傳播的,一個不透明物體在光的照射下,在物體后面的屏幕上會留下這個物體的影子,這種現(xiàn)象叫做投影。其中的光線叫做投影線,留下物體影子的屏幕叫做投影面。

思考1:不同的光源發(fā)出的'光線是有差異的,其中燈泡發(fā)出的光線與手電筒發(fā)出的光線有什么不同?

一、中心投影與平行投影

思考2:用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?

思考3:用燈泡照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?當(dāng)物體與燈泡的距離發(fā)生變化時,影子的大小會有什么不同?

思考4:用手電筒照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?當(dāng)物體與手電筒的距離發(fā)生變化時,影子的大小會有變化嗎?

思考5:在平行投影中,投影線正對著投影面時叫做正投影,否則叫做斜投影。一個與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化?

思考6:一個與投影面不平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化?

投影的分類:

把一個空間幾何體投影到一個平面上,可以獲得一個平面圖形。從多個角度進(jìn)行投影就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面,并給出下列概念:

正視圖:光線從幾何體的前面向后面正投影,得到的投影圖。

側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖。

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

幾何體的正視圖、側(cè)視圖和俯視圖,統(tǒng)稱為幾何體的三視圖。

思考1:正視圖、側(cè)視圖、俯視圖分別是從幾何體的哪三個角度觀察得到的幾何體的正投影圖?它們都是平面圖形還是空間圖形?

三、

問題探究

思考2:如圖,設(shè)長方體的長、寬、高分別為a、b、c,那么其三視圖分別是什么?

思考3:圓柱、圓錐、圓臺的三視圖分別是什么?

思考5:球的三視圖是什么?下列三視圖表示一個什么幾何體?

例1:如圖是一個倒置的四棱柱的兩種擺放,試分別畫出其三視圖,并比較它們的異同。

四、

課堂檢測

五、

小結(jié)評價

1.空間幾何體的三視圖:正視圖、側(cè)視圖、俯視圖;

2.三視圖的特點:一個幾何體的側(cè)視圖和正視圖高度一樣,俯視圖和正視圖長度一樣,側(cè)視圖和俯視圖寬度一樣;

3.三視圖的應(yīng)用及與原實物圖的相互轉(zhuǎn)化。

高中數(shù)學(xué)必修二課件 篇3

在上一節(jié)認(rèn)識空間幾何體結(jié)構(gòu)特征的基礎(chǔ)上,本節(jié)來學(xué)習(xí)空間幾何體的表示形式,以進(jìn)一步提高對空間幾何體結(jié)構(gòu)特征的認(rèn)識.主要內(nèi)容是:畫出空間幾何體的三視圖.

比較準(zhǔn)確地畫出幾何圖形,是學(xué)好立體幾何的一個前提.因此,本節(jié)內(nèi)容是立體幾何的基礎(chǔ)之一,教學(xué)中應(yīng)當(dāng)給以充分的重視.

畫三視圖是立體幾何中的基本技能,同時,通過三視圖的學(xué)習(xí),可以豐富學(xué)生的空間想象力.“視圖”是將物體按正投影法向投影面投射時所得到的投影圖.光線自物體的前面向后投影所得的投影圖稱為“正視圖”,自左向右投影所得的投影圖稱為“側(cè)視圖”,自上向下投影所得的投影圖稱為“俯視圖”.用這三種視圖即可刻畫空間物體的幾何結(jié)構(gòu),這種圖稱之為“三視圖”.

教科書從復(fù)習(xí)初中學(xué)過的正方體、長方體……的三視圖出發(fā),要求學(xué)生自己畫出球、長方體的三視圖;接著,通過“思考”提出了“由三視圖想象幾何體”的學(xué)習(xí)任務(wù).進(jìn)行幾何體與其三視圖之間的相互轉(zhuǎn)化是高中階段的新任務(wù),這是提高學(xué)生空間想象力的需要,應(yīng)當(dāng)作為教學(xué)的一個重點.

三視圖的教學(xué),主要應(yīng)當(dāng)通過學(xué)生自己的親身實踐,動手作圖來完成.因此,教科書主要通過提出問題,引導(dǎo)學(xué)生自己動手作圖 來展示教學(xué)內(nèi)容.教學(xué)中,教師可以通過提出問題,讓學(xué)生在動手實踐的過程中學(xué)會三視 圖的作法,體會三視圖的作用.對于簡單幾何體的組合體,在作三視圖之前應(yīng)當(dāng)提醒學(xué)生細(xì)心觀察,認(rèn)識了它的基本結(jié)構(gòu)特征后,再動手作圖.教材中的“探究”可以作為作業(yè),讓學(xué)生在課外完成后,再把自己的作品帶到課堂上來展示交流.

值得注意的問題是三視圖的教學(xué),主要應(yīng)當(dāng)通過學(xué)生自己的親身實踐、動手作圖來完成.另外,教學(xué)中還可以借助于信息技術(shù)向?qū)W生多展示一些圖片,讓學(xué)生辨析它們是平行投影下的圖形還是中心投影下的圖形.

主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。

教學(xué)重點:畫出簡單組合體的三視圖,給出三視圖和直觀圖,還原或想象出原實際圖的結(jié)構(gòu)特征.

思路1.能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體?工程師如何制作工程設(shè)計圖紙?

我們常用三視圖和直觀圖表示空間幾何體,三視圖是觀察者從三個不同位置觀察同一個幾何體而畫出的圖形;直觀圖是觀察者站在某一點觀察幾何體而畫出的圖形.三視圖和直觀圖在工程建設(shè)、機(jī)械制造以及日常生活中具有重要意義.本節(jié)我們將在學(xué)習(xí)投影知識的基礎(chǔ)上,學(xué)習(xí)空間幾何體的三視圖.

“橫看成嶺側(cè)成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實地反映出物體的結(jié)構(gòu)特征,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖.在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

①如圖1所示的五個圖片是我國民間藝術(shù)皮影戲中的部分片斷,請同學(xué)們考慮它們是怎樣得到的?

②通過觀察和自己的認(rèn)識,你是怎樣來理解投影的含義的?

③請同學(xué)們觀察圖2的投影過程,它們的投影過程有什么不同?

④圖2(2)(3)都是平行投影,它們有什么區(qū)別?

⑤觀察圖3,與投影面平行的平面圖形,分別在平行投影和中心投影下的影子和原圖形的形狀、大小有什么區(qū)別?

活動:①教師介紹中國的民間藝術(shù)皮影戲,學(xué)生觀察圖片.

②從投影的形成過程來定義.

③從投影方向上來區(qū)別這三種投影.

④根據(jù)投影線與投影面是否垂直來區(qū)別.

⑤觀察圖3并歸納總結(jié)它們各自的特點.

②由于光的照射,在不透明物體后面的屏幕上可以留下這個物體的影子,這種現(xiàn)象叫做投影.其中,我們把光線叫做投影線,把留下物體影子的屏幕叫做投影幕.

③圖2(1)的投影線交于一點,我們把光由一點向外散射形成的投影稱為中心投影;圖2(2)和(3)的投影線平行,我們把在一束平行光 線照射下形成投影稱為平行投影.

④圖2(2)中,投影線正對著投影面,這種平行投影稱為正投影;圖2(3)中,投影線不是正對著投影面,這種平行投影稱為斜投影.

⑤在平行投影下,與投影面平行的平面圖形留下的影子和原平面圖形是全等的平面圖形;在中心投影下,與投影面平行的平面圖形留下的影子和原平面圖形是相似的平面圖形.以后我們用正投影的方法來畫出空間幾何體的三視圖和 直觀圖.

①在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖,請你回憶三視圖包含哪些部分?

②正視圖、側(cè)視圖和俯視圖各是如何得到的?

③一般地,怎樣排列三視圖?

④正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到的幾何體的正投影圖,它們都是平面圖形.觀察長方體的三視圖,你能得出同一個幾何體的正視圖、側(cè)視圖和俯視圖在形狀、大小方面的關(guān)系嗎?

②光線從幾何體的前面向后面正投影,得到的投影圖叫該幾何體的正視圖(又稱主視圖);光線從幾何體的左面向右面正投影,得到的投影圖叫該幾何體的側(cè)視圖(又稱左視圖);光線從幾何體的上面向下面正投影,得到的投影圖叫該幾何體的俯視圖.

③三視圖的位置關(guān)系:一般地,側(cè)視圖在正視圖的右邊;俯視圖在正視圖的下邊.如圖5所示.

④投影規(guī)律:

(1)正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度.

(2)一個幾何體的正視圖和側(cè)視圖高度一樣,正視圖和俯視圖長度一樣,側(cè)視圖和俯視圖寬度一樣,即正、俯視圖——長對正;主、側(cè)視圖——高平齊;俯、側(cè)視圖——寬相等.

畫組合體的三視圖時要注意的問題:

(1)要確定好主視、側(cè)視、俯視的方向,同一物體三視的方向不同,所畫的三視圖可能不同.

(2)判斷簡單組合體的三視圖是由哪幾個基本幾何體生成的,注意它們的生成方式,特別是它們的交線位置.

(3)若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,分界線和可見輪廓線都用實線畫出,不可見輪廓線,用虛線畫出.

( 4)要檢驗畫出的三視圖是否符合“長對正、高平齊、寬相等”的基本特征,即正、俯視圖長對正;正、側(cè)視圖高平齊;俯、側(cè)視圖寬相等,前后對應(yīng).

由三視圖還原為實物圖時要注意的問題:

我們由實物圖可以畫出它的三視圖,實際生產(chǎn)中,工人要根據(jù)三視圖加工零件,需要由三視圖還原成實物圖,這要求我們能由三視圖想象它的空間實物形狀,主要 通過主、俯、左視圖的輪廓線(或補(bǔ)充后的輪廓線)還原成常見的幾何體,還原實物圖時,要先從三視圖中初步判斷簡單組合體的組成,然后利用輪廓線(特別要注意虛線)逐步作出實物圖.

例1 畫出圓柱和圓錐的三視圖.

活動:學(xué)生回顧正投影和三視圖的畫法,教師引導(dǎo)學(xué)生自己完成.

解:圖6(1)是圓柱的三視圖,圖6(2)是圓錐的三視圖.

點評:本題主要考查簡單幾何體的三視圖和空間想象能力.有關(guān)三視圖的題目往往依賴于豐富的空間想象能力.要做到邊想著幾何體的實物圖邊畫著三視圖,做到想圖(幾何體的實物圖)和畫圖(三視圖)相結(jié)合.

說出下列圖7中兩個三視圖分別表示的幾何體.

答案:圖7(1)是正六棱錐; 圖7(2)是兩個相同的圓臺組成的組合體.

例2 試畫出圖8所示的礦泉水瓶的三視圖.

活動:引導(dǎo)學(xué)生認(rèn)識這種容器的結(jié)構(gòu)特征.礦泉水瓶是我們熟悉的一種容器,這種容器是簡單的組合體,其主要結(jié)構(gòu)特征是從上往下分別是圓柱、圓臺和圓柱.

點評:本題主要考查簡單組合體的三視圖.對于簡單空間幾何體的組合體,一定要認(rèn)真觀察,先認(rèn)識它的基本結(jié)構(gòu),然后再畫它的三視圖.

例1 (安徽淮南高三第一次模擬,文16)如圖12甲所示,在正方體ABCD—A1B1C1D1中,E、F分別是AA1、C1D1的中點,G是正方形BCC1B1的中心,則四邊形AGFE在該正方體的各個面上的投影可能是圖12乙中的____________.

活動:要畫出四邊形AGFE在該正方體的各個面上的投影,只需畫出四個頂點A、G、F、E在每個面上的投影,再順次連接即得到在該面上的投影,并且在兩個平行平面上的投影是相同的.

分析:在面ABCD和面A1B1C1D1上的投影是圖12乙(1);在面ADD1A1和面BCC1B1上的投影是圖12乙(2);在面ABB1A1和面DCC1D1上的投影是圖12乙(3).

點評:本題主要考查平行投影和空間想象能力.畫出一個圖形在一個平面上的投影的關(guān)鍵是確定該圖形的關(guān)鍵點,如頂點等,畫出這 些關(guān)鍵點的投影,再依次連接即可得此圖形在該平面上的投影.如果對平行投影理解不充分,做該類題目容易出現(xiàn)不知所措的情形,避免出現(xiàn)這種情況的方法是依據(jù)平行投影的含義,借助于空間想象來完 成.

如圖13(1)所示,E、F分別為正方體面ADD′A′、面BCC′B′的中心,則四邊形BFD′E在該正方體的各個面上的投影可能是圖13(2)的___________.

分析:四邊形BFD′E在正方體ABCD—A′B′C′D′的面ADD′A′、面BCC′B′上的投影是C;在面DCC′D′上的投影是B;同理,在面ABB′A′、面ABCD、面A′B′C′D′上的投影也全是B.

例2 (2007廣東惠州第二次調(diào)研,文2)如圖14所示,甲、乙、丙是三個立體圖形的三視圖,甲、乙、丙對應(yīng)的標(biāo)號正確的是( )

分析:由于甲的俯視圖是圓,則該幾何體是旋轉(zhuǎn)體,又因正視圖和側(cè)視圖均是矩形,則甲是圓柱;由于乙的俯視圖是三角形,則該幾何體是多面體,又因正視圖和側(cè)視圖均是三角形,則該多面體的各個面都是三角形,則乙是三棱錐;由于丙的俯視圖是圓,則該幾何體是旋轉(zhuǎn)體,又因正視圖和側(cè)視圖均是三角形,則丙是圓錐.

點評:本題主要考查三視圖和簡單幾何體的結(jié)構(gòu)特征.根據(jù)三視圖想象空間幾何體,是培養(yǎng)空間想象能力的重要方式,這需要根據(jù)幾何體的正視圖、側(cè)視圖、俯視圖的幾何特征,想象整個幾何體的幾何特征,從而判斷三視圖所描述的幾何體.通常是先根據(jù)俯視圖判斷是多面體還是旋轉(zhuǎn)體,再結(jié)合正視圖和側(cè)視圖確定具體的幾何結(jié)構(gòu)特征,最終確定是簡單幾何體還是簡單組合體.

1.圖15是一幾何體的三視圖,想象該幾何體的幾何結(jié)構(gòu)特征,畫出該幾何體的形狀.

分析:由于俯視圖有一個圓和一個四邊形,則該幾何體是由旋轉(zhuǎn)體和多面體拼接成的組合體,結(jié)合側(cè)視圖和正視圖,可知該幾何體是上面一個圓柱,下面是一個四棱柱拼接成的組合體.

答案:上面一個圓柱,下面是一個四棱柱拼接成的組合體.該幾何體的形狀如圖16所示.

2.(2007山東高考,理3)下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是( )

分析:正方體的三視圖都是正方形,所以①不符合題意,排除A、B、C.

點評:雖然三視圖的畫法比較繁瑣,但是三視圖是考查空間想象能力的重要形式,因此是新課標(biāo)高考的必考內(nèi)容之一,足夠的空間想象能力才能保證順利解決三視圖問題.

分析:借助于長方體模型來判斷,如圖18所示,在長方體ABCD—A1B1C1D1中,一束平行光線從正上方向下照射.則相交直線CD1和DC1在面ABCD上的平行投影是同一條直線CD,相交直線CD1和BD1在面ABCD上的平行投影是兩條相交直線CD和BD.

3.甲、乙、丙、丁四人分別面對面坐在一個四邊形桌子旁邊,桌上一張紙上寫著數(shù)字“9”,如圖19所示.甲說他看到的是“6”,乙說他看到的是“ 6”,丙說他看到的是“ 9”,丁說他看到的是“9”,則下列說法正確的是( )

分析:由甲、乙、丙、丁四人的敘述,可以知道這四人的位置如圖20所示,由此可得甲在丁的對面,乙在甲的右邊,丙在丁的右邊.

4.(2007廣東汕頭模擬,文3)如果一個空間幾何體的正視圖與側(cè)視圖均為全等的等邊三角形,俯視圖為一個圓及其圓心,那么這個幾何體為( )

分析:由于俯視圖是一個圓及其圓心,則該幾何體是旋轉(zhuǎn)體,又因正視圖與側(cè)視圖均為全等的等邊三角形,則該幾何體是圓錐.

5.(2007山東青島高三期末統(tǒng)考,文5)某幾何體的三視圖如圖21所示,那么這個幾何體是( )

分析:由所給三視圖可以判定對應(yīng)的幾何體是四棱錐.

6.(2007山東濟(jì)寧期末統(tǒng)考,文5)用若干塊相同的小正方體搭成一個幾何體,該幾何體的三視圖如圖22所示,則搭成該幾何體需要的小正方體的塊數(shù)是( )

分析:由正視圖和側(cè)視圖可知,該幾何體有兩層小正方體拼接成,由俯視圖,可知最下層有5個小正方體,由側(cè)視圖可知上層僅有一個正方體,則共有6個小正方體.

分析:正四棱錐的正視圖與側(cè)視圖均為等腰三角形,俯視圖為正方形,對角線體現(xiàn)正四棱錐的四條側(cè)棱.

問題:用數(shù)個小正方體組成一個幾何體,使它的正視圖和俯視圖如圖25所示,俯視圖中小正方形中的字母表示在該位置的小立方體的個數(shù).

(1)你能確定 哪些字母表示的數(shù)?

分析:解決本題的關(guān)鍵在于觀察正視圖、俯視圖,利用三視圖規(guī)則中的“在三視圖中,每個視圖都反映物體兩個方向的尺寸.正視圖反映物體的上下和左右尺寸,俯視圖反映物體的前后和左右尺寸,側(cè)視圖反映物體的前后和上下尺寸”.又“正視圖與俯視圖長對正,正視圖與側(cè)視圖高平齊,俯視圖與側(cè)視圖寬相等”,所以,我們可以得到a=3,b=1,c=1,d,e,f中的最大值為2.

解:(1)面對數(shù)個小立方體組成的幾何體,根據(jù)正視圖與俯視圖的觀察我們可以得出下列結(jié)論:

①a=3,b=1,c=1;

②d,e,f中的最大值為2.

所以上述字母中我們可以確定的是a=3,b=1,c=1.

(2)當(dāng)d,e,f中有一個是2時,有3種不同的形狀;

當(dāng)d,e,f有兩個是2時,有3種不同的形狀;

當(dāng)d,e,f都是2時,有一種形狀.

所以 該幾何體可能有7種不同的形狀.

2.簡單幾何體和組合體的三視圖的畫法及其投影規(guī)律.

習(xí)題1.2 A 組 第1、2題.

高中數(shù)學(xué)必修二課件 篇4

通過第一章《空間幾何體》的學(xué)習(xí),學(xué)生對于立體幾何已經(jīng)有了初步的認(rèn)識,能夠識別棱柱、棱錐、棱臺、圓柱、圓錐、圓臺、球,并理解它們的幾何特征。但是這種理解還只是建立在觀察、感知的基礎(chǔ)上的,對于原理學(xué)生是不明確的,所以學(xué)生此時有很強(qiáng)的求知欲,急于想搞清楚為什么;同時學(xué)生經(jīng)過高中一年的學(xué)習(xí),已經(jīng)具備了一定的邏輯推理能力,只是缺乏訓(xùn)練,不夠嚴(yán)密,不夠清晰;有一定的自主探究和合作學(xué)習(xí)的能力,但有待提高,并愿意動手并參與分組討論。

1. 理解空間點、直線、平面的概念,知道空間點、直線、平面之間存在什么樣的關(guān)系;

2. 記憶三公理三推論,能夠用簡單的語言概括三公理三推論,會用圖形表示三公理三推論,并將其轉(zhuǎn)化成數(shù)學(xué)符號語言;

3. 明確三公理三推論的功能,掌握使用三公理三推論解決立體幾何問題的方法。

1. 通過自己動手制作模型,直觀地感知空間點、直線與平面之間的位置關(guān)系,以及三公理三推論;

2. 通過思考、討論,發(fā)現(xiàn)三公理三推論的條件和結(jié)論;

3. 通過例題的訓(xùn)練,進(jìn)一步理解三公理三推論,明確三公理三推論的功能。

1. 通過操作、觀察、討論培養(yǎng)對立體幾何的興趣,建立合作的意識;

2. 感受立體幾何邏輯體系的嚴(yán)密性,培養(yǎng)學(xué)生細(xì)心的學(xué)習(xí)品質(zhì)。

1. 理解三公理三推論的概念及其內(nèi)涵;

(1)每位同學(xué)準(zhǔn)備兩張硬紙板,其中一張中間用小刀劃條縫,鉛筆三根;

(2)教師自制的多媒體課件。

1. 回憶構(gòu)成平面圖形的基本元素:點、直線。①兩者都是最原始的概念,點沒有大小、面積、厚度,直線是向兩側(cè)無限延伸的;②點用大寫英文字母表示,直線用小寫英文字母表示;③ 如果將點看作元素,則直線是一系列點構(gòu)成的集合,所以點在直線上記作,點不在直線上記作;

2. 提出問題:構(gòu)成空間幾何體有哪些基本元素?(大屏幕出示棱柱、棱錐、棱臺)學(xué)生很快得到答案:點、直線、平面。

3. 引入課題:什么是平面?點、直線、平面之間有什么樣的位置關(guān)系?平面有什么性質(zhì)?這就是我們這堂課要研究的問題。

平面也是一個最原始的概念,是向四周無限延伸的,沒有邊界。一般用希臘字母、、,…表示平面,或者記為平面ABC,平面ABCD等等。

①點與直線;②點與平面;③直線與平面。

問題二:要將鉛筆放置到硬紙板內(nèi)至少需要幾個公共點?

學(xué)生通過操作,體會到要將鉛筆放置到硬紙板內(nèi),只需將鉛筆上兩點放置到硬紙板內(nèi)。

學(xué)生通過操作,體會公理二所表達(dá)的含義。

問題三:還能根據(jù)什么條件確定一個平面?引出三推論。

學(xué)生通過操作,體會公理三所表達(dá)的含義。

⒈平面具有無限延展性;

⒉ 公理一有什么功能?條件是什么?

⒊ 公理二有什么功能?條件是什么?

⒉平面幾何中證明平行四邊形有哪些定理?這些定理在空間中能否成立?說明理由。

高中數(shù)學(xué)必修二課件 篇5

一)、培養(yǎng)良好的學(xué)習(xí)興趣。

兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者?!币馑颊f,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中?!昂谩焙汀皹贰本褪窃敢鈱W(xué),喜歡學(xué),這就是興趣。興趣是最好的老師,有興趣才能產(chǎn)生愛好,愛好它就要去實踐它,達(dá)到樂在其中,有興趣才會形成學(xué)習(xí)的主動性和積極性。在數(shù)學(xué)學(xué)習(xí)中,我們把這種從自發(fā)的感性的樂趣出發(fā)上升為自覺的理性的“認(rèn)識”過程,這自然會變?yōu)榱⒅緦W(xué)好數(shù)學(xué),成為數(shù)學(xué)學(xué)習(xí)的成功者。那么如何才能建立好的學(xué)習(xí)數(shù)學(xué)興趣呢?

1、課前預(yù)習(xí),對所學(xué)知識產(chǎn)生疑問,產(chǎn)生好奇心。

2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價,變?yōu)楸薏邔W(xué)習(xí)的動力。

3、思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。

4、聽課中注意老師講解時的數(shù)學(xué)思想,多問為什么要這樣思考,這樣的方法怎樣是產(chǎn)生的?

5、把概念回歸自然。所有學(xué)科都是從實際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實生活,如角的概念、直角坐標(biāo)系的產(chǎn)生、極坐標(biāo)系的產(chǎn)生都是從實際生活中抽象出來的。只有回歸現(xiàn)實才能對概念的理解切實可靠,在應(yīng)用概念判斷、推理時會準(zhǔn)確。

二)、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。

習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣還包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。

三)、有意識培養(yǎng)自己的各方面能力。

數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時學(xué)習(xí)中要注意開發(fā)不同的學(xué)習(xí)場所,參與一切有益的學(xué)習(xí)實踐活動,如數(shù)學(xué)第二課堂、數(shù)學(xué)競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進(jìn)行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設(shè)計“智力課”和“智力問題”比如對習(xí)題的解答時的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達(dá)到自己各方面能力的全面發(fā)展。

高中數(shù)學(xué)必修二課件 篇6

體味本文“寄情于物”的寫法并借鑒之。

啟發(fā)學(xué)生領(lǐng)悟本文以榕樹為眼前景與思鄉(xiāng)情的觸發(fā)點、聯(lián)系點,并以此聯(lián)想到諸多瑣細(xì)平凡的故鄉(xiāng)生活的?掠影,來表達(dá)自己真摯、濃烈而悵惘的思鄉(xiāng)之愁。

1、課文寫了幾個地方的榕樹?你認(rèn)為文章可以分為幾個層次?

2、圍繞故鄉(xiāng)的榕樹,作者回憶了與之相關(guān)的哪些事情?作者用什么將這些事情連綴起來?

3、本文的三個部分銜接過渡自然。文章是怎樣過渡的?

①第三段是過渡段。其中,“我的心卻像一只小鳥,從哨音里展翅飛出去……停落在故鄉(xiāng)熟悉的大榕樹上。我仿佛又看到……看到……”這些詞句,像一座橋,把眼前景物與思想情懷聯(lián)系起來,過渡得巧妙自然。

②“那樣的日子不會再回來了”一句,總結(jié)了上文,表明了回憶的結(jié)束。

③“我仿佛剛剛從一場夢中醒轉(zhuǎn),身上還留有榕樹葉隙漏下的清涼”一句,和上面的夏夜描寫承接,銜接自然、巧妙。

4、課文倒數(shù)第2段連用兩個問句,這樣寫對表達(dá)情感有什么作用?

是疑問,十分真摯地傳達(dá)出作者濃濃的思鄉(xiāng)情。

①、搜集有關(guān)鄉(xiāng)情的詩歌、文章進(jìn)行交流。

②、談?wù)勛约焊惺茏钌羁痰囊淮吻楦畜w會。

高中數(shù)學(xué)必修二課件 篇7

一、創(chuàng)設(shè)情境,激趣導(dǎo)入

師:前段時間老師去了黃河附近旅游,祖國山川的美景,讓我留連忘返。給我留下印象最深的是黃河邊上一個以擺渡為生的老人。他生活在黃河邊,工作在黃河邊,他那勤勞勇敢的精神,讓我難以忘懷。同學(xué)們,知道什么是“擺渡”嗎?(生看課件,理解“擺渡”一詞。)

(做“你說我猜”的游戲,擺渡船開始狀態(tài)在南岸。學(xué)生說數(shù),教師猜測船在哪一岸?)

師:其實老師掌握了數(shù)的奇偶性的規(guī)律。(師板書:數(shù)的奇偶性。)這節(jié)課我們就來研究數(shù)的奇偶性的規(guī)律,等你們把它的規(guī)律找出來了,你猜得會比我還要準(zhǔn)、還要快!

【設(shè)計意圖:通過試講發(fā)現(xiàn):學(xué)生雖然已經(jīng)上5年級了,但對“擺渡”一詞還是理解不透。為了解決這個問題,創(chuàng)設(shè)了去黃河旅游的情境,使學(xué)生在不知不覺中理解了“擺渡”一詞的詞義,也為繼續(xù)學(xué)習(xí)掃清了障礙。從學(xué)生熟悉的生活情境中提出數(shù)學(xué)問題,在學(xué)生理解“擺渡”一詞后,教師引導(dǎo)學(xué)生做“你說我猜”的游戲,學(xué)生由此產(chǎn)生疑問。這大大地激發(fā)了他們的學(xué)習(xí)興趣,為后面的學(xué)習(xí)探究奠定了堅實的基礎(chǔ)。】

二、觀察思考,發(fā)現(xiàn)規(guī)律

(同桌研討:用什么方法可以知道船在哪岸呢?)

【設(shè)計意圖:根據(jù)學(xué)生的年齡特征以及學(xué)生的需要,應(yīng)著重引導(dǎo)學(xué)生掌握學(xué)習(xí)方法,會運用恰當(dāng)?shù)姆椒ń鉀Q數(shù)學(xué)問題?!?/p>

學(xué)生匯報:1.數(shù)數(shù)的方法。隨著學(xué)生的回答,師適時演示課件。2.列表方法。師演示列表方法,生完成手中的表。

讓學(xué)生觀察“畫示意圖”、“列表”兩種解題方法,引導(dǎo)他們從中發(fā)現(xiàn)規(guī)律。

學(xué)生總結(jié):船擺渡奇數(shù)次,船在北岸。船擺渡偶數(shù)次,船在南岸。

師:老師就是用這個規(guī)律,很快判斷出小船在哪側(cè)岸邊。現(xiàn)在你們也想試一試嗎?(教師說數(shù),學(xué)生猜船在哪側(cè)的岸邊。)

師:你們猜得可真快,如果有人說小船開始狀態(tài)在南岸,擺渡100次,小船在北岸,這種說法對嗎?為什么?(指生說理由。)

師:通過解決這些問題,觀察板書,你有什么發(fā)現(xiàn)?

(學(xué)生嘗試總結(jié)出規(guī)律:開始狀態(tài)在南岸,奇數(shù)次與開始狀態(tài)相反,偶數(shù)次與開始狀態(tài)相同。)

師:像這樣的規(guī)律在我們生活中隨處可見。下面我們來看翻杯子游戲。請看大屏幕:有一個杯子開始狀態(tài)是杯口朝上,那么翻動1次杯口朝下,翻動2次杯口朝上,用你自己喜歡的方法,想一想、做一做,翻動10次后,杯口的方向朝哪個地方?19次呢?(生回答并說明理由。)

師:你還能提出其他問題嗎?(生提問題并互相解決。)

【設(shè)計意圖:在此環(huán)節(jié),只讓學(xué)生看演示并沒有動手去翻杯子。目的在于讓學(xué)生內(nèi)化體會,學(xué)會運用解決問題的方法。5年級學(xué)生不應(yīng)只停留在動手操作上,更多的應(yīng)該是訓(xùn)練思維的發(fā)展。另外,在此環(huán)節(jié)設(shè)計提問題,目的為下一環(huán)節(jié)的提問作鋪墊。】

師:生活中有許多這樣具有奇偶性規(guī)律的事物,你能舉幾個例子嗎?你還能提出類似的數(shù)學(xué)問題嗎?

【設(shè)計意圖:在有趣的互動活動中反饋所學(xué)知識,讓學(xué)生明白數(shù)學(xué)是服務(wù)于生活的。學(xué)生興趣盎然,積極參與探究活動。在數(shù)學(xué)活動中探索數(shù)的特征,體驗研究方法,提高學(xué)生的推理能力。】

師:我們今天利用數(shù)的奇偶解決了身邊的許多問題,老師很高興,所以,想送給你們一些禮物。不過,這些禮物需要你們用智慧才能獲得,大家有信心獲得禮物嗎?

(師出示兩個盒子,讓學(xué)生觀察兩個盒子里的數(shù)有什么特點。)

師:從兩個盒子里各抽一張卡片,然后把它們加起來,結(jié)果是多少,禮物圖中相應(yīng)數(shù)字的禮物就是你的。(禮物兌獎表略。)

(在抽獎過程中學(xué)生發(fā)現(xiàn):偶數(shù)加奇數(shù)都得奇數(shù),獎品都在偶數(shù)上,所以怎么抽也抽不到獎品。)

師:是不是所有的偶數(shù)加奇數(shù)都得奇數(shù),大家來驗證一下。(小組討論,并交流。)

(生尋找原因,總結(jié)發(fā)現(xiàn):奇數(shù)+偶數(shù)=奇數(shù)。)

師:老師,現(xiàn)在想讓每個前來抽獎的同學(xué)都能獲得獎品,讓你們改變規(guī)則,會怎樣改?

(學(xué)生積極想辦法,得出結(jié)論:偶數(shù)+偶數(shù)=偶數(shù)、奇數(shù)+奇數(shù)=偶數(shù)。)

【設(shè)計意圖:通過此游戲激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生帶著愉悅的心情探索新知,使枯燥的數(shù)學(xué)課注入了新鮮的活力,調(diào)動了學(xué)生興奮的神經(jīng),數(shù)學(xué)探究將事半功倍。】

三、運用規(guī)律,拓展延伸

(課件出示:不用計算,判斷算式的結(jié)果是奇數(shù)還是偶數(shù)?)

10389+20__11387+131

268+1024 38946+3405

學(xué)生判斷算式的結(jié)果是奇數(shù)還是偶數(shù)?說明理由。

(課件出示:不用計算,判斷算式的結(jié)果是奇數(shù)還是偶數(shù)?)

3721-20__22280-10238800-345

學(xué)生先判斷結(jié)果是奇數(shù)還是偶數(shù),再根據(jù)上面減法算式找出減法中數(shù)的奇偶性的變化規(guī)律。(小組研討,尋找規(guī)律。)

學(xué)生匯報后,課件出示:

奇數(shù)-奇數(shù)=偶數(shù)偶數(shù)-偶數(shù)=偶數(shù)

奇數(shù)-偶數(shù)=奇數(shù)偶數(shù)-奇數(shù)=奇數(shù)

【設(shè)計意圖:在已有知識的基礎(chǔ)上,根據(jù)學(xué)生的實際情況,進(jìn)行拓展。目的在于開發(fā)學(xué)生的潛能,提高和訓(xùn)練學(xué)生的思維能力?!?/p>

高中數(shù)學(xué)必修二課件 篇8

高一數(shù)學(xué)必修二提綱

1:一般式:Ax+By+C=0(A、B不同時為0)適用于所有直線

K=-A/B,b=-C/B

A1/A2=B1/B2≠C1/C2←→兩直線平行

A1/A2=B1/B2=C1/C2←→兩直線重合

橫截距a=-C/A

縱截距b=-C/B

2:點斜式:y-y0=k(x-x0)適用于不垂直于x軸的直線

表示斜率為k,且過(x0,y0)的直線

3:截距式:x/a+y/b=1適用于不過原點或不垂直于x軸、y軸的直線

表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線

4:斜截式:y=kx+b適用于不垂直于x軸的直線

表示斜率為k且y軸截距為b的直線

5:兩點式:適用于不垂直于x軸、y軸的直線

表示過(x1,y1)和(x2,y2)的直線

(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

6:交點式:f1(x,y)x+f2(x,y)=0適用于任何直線

表示過直線f1(x,y)=0與直線f2(x,y)=0的交點的直線

7:點平式:f(x,y)-f(x0,y0)=0適用于任何直線

表示過點(x0,y0)且與直線f(x,y)=0平行的直線

8:法線式:x·cosα+ysinα-p=0適用于不平行于坐標(biāo)軸的直線

過原點向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長度

9:點向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)適用于任何直線

表示過點(x0,y0)且方向向量為(u,v)的直線

10:法向式:a(x-x0)+b(y-y0)=0適用于任何直線

表示過點(x0,y0)且與向量(a,b)垂直的直線

11:點到直線距離

點P(x0,y0)到直線Ι:Ax+By+C=0的距離

d=|Ax0+By0+C|/√A2+B2

兩平行線之間距離

若兩平行直線的方程分別為:

Ax+By+C1=OAx+By+C2=0則

這兩條平行直線間的距離d為:

d=丨C1-C2丨/√(A2+B2)

12:各種不同形式的直線方程的局限性:

(1)點斜式和斜截式都不能表示斜率不存在的直線;

(2)兩點式不能表示與坐標(biāo)軸平行的直線;

(3)截距式不能表示與坐標(biāo)軸平行或過原點的直線;

(4)直線方程的一般式中系數(shù)A、B不能同時為零。

13:位置關(guān)系

若直線L1:A1x+B1y+C1=0與直線L2:A2x+B2y+C2=0

1.當(dāng)A1B2-A2B1≠0時,相交

2.A1/A2=B1/B2≠C1/C2,平行

3.A1/A2=B1/B2=C1/C2,重合

4.A1A2+B1B2=0,垂直

高中數(shù)學(xué)快速解題法

方法1、在解題的過程中,是一個思維的過程。一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,只要順著這些解題的思路,就可以很容易的找到習(xí)題的答案。

方法2、做一道題目時,最重要的就是審題。審題的第一步就是讀題。讀題時要慢,一邊讀、一邊思考,要特別注意每一句話的內(nèi)在含義,并從中找出隱含條件。很多人并沒有養(yǎng)成這種習(xí)慣,結(jié)果常常會在做題的時候漏掉一些信息,所以在解題的時候要特別注意審題。

方法3、在做了一定數(shù)量的習(xí)題后,就會對所涉及到的知識、解題方法有比較清晰的了解。這個時候就需要將這些知識進(jìn)行歸納總結(jié),以便以后的解題思路更加清晰,達(dá)到舉一反三的效果,這樣做數(shù)學(xué)題的速度就會大大提升了。

方法4、做題只是學(xué)習(xí)過程中的一部分,所以不能為了解題而解題。解題時,腦海中的概念越清晰、對公式、定理越熟悉,解題的速度就越快。所以在解題時,應(yīng)該先回歸課本,熟悉基本內(nèi)容,理解其正確的含義,接著再做后面的練習(xí)。

方法5、有些題目,尤其是幾何體,一定要學(xué)會畫圖。畫圖是一個把抽象思維變成形象思維的過程,會大大降低解題的難度。很多題目,只要分析圖畫出來之后,其中的關(guān)系就會變得一目了然。所以學(xué)會畫圖,對于提高解題速度非常重要。

方法6、人對事物的認(rèn)知總是會有一個從易到難的過程,簡單的問題做多了,概念清晰了,對解題的步驟熟悉了,解題時就會形成跳躍思維,解題的速度也會大大的提高。所以在學(xué)習(xí)時,要根據(jù)自己的能力,去解那些看似簡單,卻比較重要的習(xí)題,來不斷提高解題速度和解題能力。隨著速度和能力的提高,在逐漸的去增加難度,就會事半功倍了。

方法7、習(xí)慣很重要,很多同學(xué)做題速度慢就是平時做作業(yè)的時候習(xí)慣了拖延時間,從而導(dǎo)致了不好的解題習(xí)慣。所以想要提高做題速度,就要先改變拖沓的習(xí)慣。比較有效的方法是限時答題,在平常做作業(yè)的時候,給自己規(guī)定一個時間,先不管正確率,首先要保證在規(guī)定時間內(nèi)完成數(shù)學(xué)作業(yè),然后在去改正錯誤。時間長了之后,自然會改正拖延時間的壞毛病。

學(xué)好數(shù)學(xué)的建議

學(xué)數(shù)學(xué)沒有捷徑,只能踏踏實實做題,把每一種類型題都做會了,那么數(shù)學(xué)才有可能學(xué)好。在高中,沒有必要去買數(shù)學(xué)輔導(dǎo)資料,只要把教材看透了,就能學(xué)好數(shù)學(xué)。課本怎么看?老師講課之前看,看完例題做課后習(xí)題,把教材提前學(xué)會了。上課干什么?老師講課還需認(rèn)真聽,然后再理解一遍,把定理、公式、定義等都背下來。當(dāng)然,數(shù)學(xué)書不止看一遍,當(dāng)做題不會時,還需要翻閱,當(dāng)考試前也可以復(fù)習(xí)課本,平時還可以去看。

數(shù)學(xué)光看書還遠(yuǎn)遠(yuǎn)不夠,做題才是根本。課后練習(xí)冊、數(shù)學(xué)卷子每道題都要認(rèn)真去做,遇到不會的題目想方設(shè)法去解,實在做不出來了劃重點,等課上重點去聽,課下自己再重新做一遍,隔幾天再拿出來做一遍。

上數(shù)學(xué)課也是要做筆記的,做筆記能夠讓你復(fù)習(xí)時思路更清晰,看書時重點更明確,而且一些重要的東西書上往往沒有,只有在筆記上才會有所體現(xiàn),所以筆記要好好整理。但是,做筆記不能影響聽課效果,如果跟不上可以課后借同學(xué)的抄。

高中數(shù)學(xué)必修二課件 篇9

1、學(xué)生瀏覽課文,概括情節(jié),然后由師生共同討論回答“旁批”的提問。

2、關(guān)注阿Q對革命的態(tài)度及其變化,阿Q的革命目的,挖掘其思想根源。

①“宣統(tǒng)三年九月十四日--即阿Q將搭連賣給趙白眼的這一天--三更四點,有一只烏篷船到了趙府上的河埠頭?!苯B興光復(fù)這么莊嚴(yán)的事件,作者卻用阿Q賣搭連給趙白眼這件事來作補(bǔ)充說明,你認(rèn)為作者在這里有什么用意?

提示:一方面說明普通老百姓并不關(guān)心什么紹興光復(fù),而只注意身邊發(fā)生的小事,辛亥革命與人們的生活差得太遠(yuǎn);表明作者對辛亥革命的態(tài)度是懷疑的,把紹興光復(fù)與阿Q賣搭連這事聯(lián)系在一起,顯得滑稽可笑。

②“至于革命黨,有的說是便在這一夜進(jìn)了城,個個白盔白甲:穿著崇禎皇帝的素。”此句怎樣理解?

提示:這說明清朝已經(jīng)滅亡了,但未莊人的思想仍停留在明末清初的幾百年的過去。民眾之愚昧落后不言自見。

③阿Q?先是對革命黨“深惡而痛絕之”,何以很快又向往革命,要“革這伙媽媽的命”?

提示:阿Q?身上有著狹隘保守排斥異端的思想,他天生反對變革現(xiàn)實的一切事情,所以他一開始聽到革命時很反感,覺得與他為難,便“深惡痛絕”;可是他身上又有著盲目趨時的特點,加上他對現(xiàn)狀的不滿,尤其自己生活的不痛快,看到舉人老爺這樣怕,所以他自然又向往革命了。這表明他對革命態(tài)度的不穩(wěn)定性,對革命的不理解甚至誤解。

④將阿Q宣布革命后,趙太爺?shù)摹袄螿”和趙白眼的“阿Q哥”與先前的“混小子”對比,揣摩一下趙太爺?shù)热说膬?nèi)心世界,說說此時的趙太爺又變成了一個怎樣的趙太爺?

提示:此時的趙太爺是一個惶恐狡詐卑怯的“弱勢”土地主。

⑤阿Q的“白日夢”表明他革命的目的是什么?

提示:用他自己的話說就是“要什么就是什么,歡喜誰就是誰”;用我們的話來說就是金錢、權(quán)力和女人。

⑥老尼姑的“革過一革的”這五個字有何含義。

提示:表明當(dāng)時“革命”一詞成為人們的口頭禪,但又不理解什么是革命,所以老尼姑演繹說“革過一革的”,這是對革命的絕大諷刺。所謂革命,就是假洋鬼子和秀才的打砸搶罷了。

⑦說說“這是咸與維新的時候了……也相約去革命”這句話的諷刺意味。

提示:揭示兩個反動人物“革命”行動的丑惡卑劣,意味深長。也從另一個側(cè)面揭示辛亥革命中資產(chǎn)階級勢力與封建勢力勾結(jié)起來奪取革命果實的史實?!扒橥兑夂稀薄案锩焙袠O大的諷刺意味。

⑧阿Q與趙秀才、假洋鬼子雖“素不相能”,但都想到去靜修庵“革命”,這說明什么?

提示:說明他們的革命動機(jī)都是十分低下的,無非就是找一些弱者來欺負(fù)一番,找一些封建主義的東西來革一革罷了。它讓讀者明白,辛亥革命之所以失敗,就是這樣的人太多了。

3、“革命”的阿Q對革命的認(rèn)識糊涂:

封建意識:革命黨便是造反,造反便是與他為難,?“?深惡而痛絕之”。

革命動機(jī):舉人老爺怕革命,未莊的男女慌張,阿Q快意。革這伙媽媽的的命

革命對象:第一個該死的是小D和趙太爺,還有秀才,還有假洋鬼子,留幾條么?王胡本來還可留,但也不要了。

4、注意未莊人對革命后的阿?態(tài)度的變化。

二、學(xué)習(xí)第八章。

1、概括情節(jié),探討旁批的問題。

2、體會小說對比描寫手法的奇妙。不準(zhǔn)革命的阿Q為什么會這樣?說明革命對于阿Q意味著什么?

阿Q輕輕的走近了,站在趙白眼的背后,心里想招呼,卻不知道怎么說才好

用原文回答:洋先生不準(zhǔn)他革命,他再沒有別的路;從此決不能望有白盔白甲的人來叫他,他所有的抱負(fù),志向,希望,前程,全被一筆勾銷了

3、讀讀議議:

①“帶兵的也還是先前的老把總”表明什么?

提示:說明“革命”換湯不換藥,許多投機(jī)分子鉆進(jìn)革命隊伍中,竊取了革命果實。

②“趙司晨腦后空蕩蕩的走來”,“空蕩蕩”用的妙在哪里?

提示:這個詞把人們看慣了腦后的辮子,而現(xiàn)在一下子看不見辮子時不習(xí)慣的微妙感覺寫出來了,很有滑稽感。

③未莊人對秀才掛“銀桃子”“都驚服”,“驚服”一詞有何含義?

提示:這個詞刻畫了未莊人前后相連的兩種心態(tài),先是猜想“銀桃子”可能是當(dāng)大官的象征而吃驚,過后很快便佩服,表明未莊人的趨炎附勢心理。

④“我是性急的,……誰愿意在這小縣城里做事情。……”假洋鬼子的這段“演講”,滿口“鬼話”,不提辛亥革命的真正功臣孫中山、黃興等,卻提一個投機(jī)分子洪哥。說說這段話刻畫了假洋鬼子一副怎樣的嘴臉。

提示:滿口鬼話,大吹牛皮,捏造革命經(jīng)歷個革命資本。半吊子知識分子,外表新式,實際上是一個投機(jī)、善變、鉆營的封建余孽。他的這番話只能蒙騙沒見過世面的未莊鄉(xiāng)下人。

⑤洋先生為什么不準(zhǔn)阿Q“革命”?

提示:減洋鬼子作為一個與封建主義有著千絲萬縷聯(lián)系的新式資產(chǎn)階級人物,注定與廣大人民有著天然的隔膜,并沒有絲毫共同的利益可言。尤其是,假如假洋鬼子同意了阿Q與他一起革命,那么就會認(rèn)為是對自己身份的極大污辱。所以他決不準(zhǔn)阿Q革命,決不同阿Q共一條戰(zhàn)壕。

⑥阿Q認(rèn)為洋先生不準(zhǔn)其革命,“再沒有別的路”,你認(rèn)為呢?

提示:憑阿Q當(dāng)時的覺悟程度,他認(rèn)為自己是無路可走的,實際上他也確實是無路可走。本來可以投奔真正的革命黨,但按照他的'覺悟,他不可能找到真正的革命黨。

⑦趙家遭搶這兩段話中用了六個“抬出了”,對于表現(xiàn)阿Q此時的心情有怎樣的效果?

提示:強(qiáng)調(diào)阿Q沒有被邀請革命而表現(xiàn)的焦慮不安的心情,更體現(xiàn)他革命動機(jī)的低下,那就是想分點東西。

⑧阿Q要告假洋鬼子“造反”的狀,你對這一情節(jié)怎樣理解?

提示:一方面參加革命不成,就要報復(fù),這表現(xiàn)了他思想的狹隘;另一方面,說明阿Q的革命愿望也經(jīng)不起考驗,因為他對于革命的認(rèn)識根本就不明確。

4、特別強(qiáng)調(diào),阿Q不許小D這樣與他情況相似的人革命所流露的自私狹隘思想;未莊人對自由黨的“柿油黨”的稱法和銀桃子抵翰林的認(rèn)知,都顯示了辛亥革命的不徹底性,百姓所有的還都是舊思想舊認(rèn)知。

三、學(xué)習(xí)第九章。

1、這一章寫阿Q被當(dāng)作替死鬼被捕、被審和被處決,思想開掘深刻,諷刺入木三分,是作者精心打造的“大團(tuán)圓”,也是編輯們著意設(shè)計“旁批”的一章。因而研讀時應(yīng)調(diào)動多種朗讀方式去朗誦,去品讀,并認(rèn)真回答“旁批”所提出的每一個問題。

2、重點研討:

①趙家遭搶了,未莊人為什么既“快意”又“恐慌”?

提示:“快意”是因為未莊人平時雖說敬畏趙太爺,但作為被壓迫者,心底里還是恨趙太爺這種壓迫者,所以聽說趙家遭搶,自然就“快意”;“恐慌”是因為對形勢不了解,怕危及自己的財產(chǎn)和生命。

②捉拿阿Q竟然用那么多兵,作者這樣寫有何用意?

③“高明”一詞通常是什么意思?這里怎么解釋?

提示:“高明”一般指見解、技能等的高超,這里作者是一種創(chuàng)造性的用法,意思是高大明亮。也就是說土谷祠并沒有比大牢更好。

④阿Q在“民國”的公堂上行下跪之禮,你怎么看待這件事?

提示:阿Q的下跪,表明他身上的奴性根深蒂固。見到官就下跪,這是中國幾千年封建統(tǒng)治者對人民馴服的結(jié)果,背后的實質(zhì)是對國民人格的污辱,但國民長期如此,就像阿Q一樣,覺得某人有來頭,就自然下跪。作者描寫這一情節(jié),一方面是揭露統(tǒng)治者的愚民政策,另一方面是批評國民的奴性人格。

⑤阿Q“畫圓圈”這樣的細(xì)節(jié)描寫,表現(xiàn)了阿Q什么性格?

⑥小說中前后共有幾次寫阿Q“睡著了”?說說其言外之意。

提示:大概有五六次,這不僅是寫他生理上的睡著了,也暗寫他的麻木不仁。作者憂慮國民在鐵屋子里沉睡不醒,又希望他們驚醒。

⑦死到臨頭的阿Q,精神上還那么“泰然”,對此你有什么想法?

⑧“狼”在文中有何象征意義?

提示“狼”象征著那些麻木的看客,不僅充當(dāng)看客,也充當(dāng)統(tǒng)治者劊子手的幫兇,一起來吃掉阿Q。

⑨“他們便漸漸的都發(fā)生了遺老的氣味”這句話是什么意思?

提示:萬變不離其宗,頑固的封建階級本性不變,得了“銀桃子”比作“頂子”“翰林”,失了辮子如喪考妣,終于還是迷戀封建王朝的“遺老”。

⑩獨寫一段未莊人對阿Q被槍斃的態(tài)度來結(jié)束本文,它隱含作者的什么用意。

提示:給讀者揭示一個十分悲觀的現(xiàn)象:社會仍是如此黑暗,國民仍是如此愚昧,中國,何時才能得救?

3、旁批之外,強(qiáng)調(diào)阿Q三次“似乎覺得,大約本來要”怎樣的心理。這樣的心理其實是一種認(rèn)命的宿命觀,這樣的想法使一切都成為自然,從而淡化了人的努力和掙扎。

4、糾正最后一個旁批概括上的不完全,理解魯迅的意圖。

四、布置作業(yè)。

概括阿Q形象,理解作者的創(chuàng)作意圖。

高中數(shù)學(xué)必修二課件 篇10

《詩經(jīng)》教案 學(xué)習(xí)目標(biāo): ??? 1.了解《詩經(jīng)》常識:風(fēng)、雅、頌、賦、比、興。 ??? 2.學(xué)習(xí)詩中的比興手法及重章疊唱的章法。 ??? 3.了解《詩經(jīng)》的現(xiàn)實主義傳統(tǒng),認(rèn)識現(xiàn)實主義創(chuàng)作方法的特點。 ??? 4.了解古代勞動人民的生活。 ???[教學(xué)時間]一課時 ??? 預(yù)習(xí)檢查: ??? 了解了哪些關(guān)于《詩經(jīng)》的文學(xué)常識? ??? 文學(xué)常識介紹: ??? 《詩經(jīng)》是我國最早的詩歌總集。它收集了從西周初期至春秋中葉大約5間的詩歌305篇。先秦稱為《詩》,或取其整數(shù)稱《詩三百》。西漢時被尊為儒家經(jīng)典,始稱《詩經(jīng)》,并沿用至今。《詩經(jīng)》所錄,均為曾經(jīng)入樂的歌詞?!对娊?jīng)》的體例是按照音樂性質(zhì)的不同來劃分的,分為風(fēng)、雅、頌三類。 ???? ①風(fēng),是不同地區(qū)的地方音樂。《風(fēng)》詩是從周南、召南、魏、唐、秦、陳、檜、曹、等15個地區(qū)采集上來的土風(fēng)歌謠。共160篇。大部分是民歌。 ???? ②雅,是周王朝直轄地區(qū)的音樂,即所謂正聲雅樂。《雅》詩是宮廷宴享或朝會時的樂歌,按音樂的不同又分為《大雅》31篇,《小雅》74篇。 ??? ?③頌,是宗廟祭祀的舞曲歌辭,內(nèi)容多是歌頌祖先功業(yè)的。 ???? 所謂《詩經(jīng)》“六義”,其中風(fēng)、雅、頌,是指體例分類來說的;賦、比、興,是就表現(xiàn)手法而言。關(guān)于賦、比、興,宋代朱熹做了比較確切的解釋:“賦者,敷陳其事而直言之也;比者,以彼物比此物也;興者,先言他物以引起所詠之詞也。”賦、比、興手法的成功運用,是構(gòu)成《詩經(jīng)》民歌濃厚風(fēng)土氣息的重要原因?!对娊?jīng)》是中國現(xiàn)實主義文學(xué)的光輝起點。由于其內(nèi)容豐富、思想和藝術(shù)上的高度成就,在中國以至世界文化史上都占有重要地位。它開創(chuàng)了中國詩歌的優(yōu)秀傳統(tǒng),對后世文學(xué)產(chǎn)生了不可磨滅的影響。 ? 《詩經(jīng)?氓》 ??? 【教學(xué)目標(biāo)】 ??? 1、通過本文,了解衛(wèi)地的風(fēng)土人情,體會男女主人公的生活經(jīng)歷。 ??? 2、了解課文的內(nèi)容,熟悉課文中的人物和他們之間的關(guān)系。 ??? 3、透過事情的表面,挖掘人物獨特的內(nèi)心體驗,總結(jié)人物的性格特征。 ??? 4、學(xué)習(xí)獨特的語言表現(xiàn)手法,對照古今不同,掌握古詞的'含義和不同的表現(xiàn)方式。 ??? 【教學(xué)時間】一課時 ??? 【教學(xué)步驟】 ? ??? 1、導(dǎo)入話題 ??? 愛情是人類永恒的話題,有人的地方,就會書寫不同的愛情故事,今天,讓我們走進(jìn)遙遠(yuǎn)的公元前的衛(wèi)國,聆聽一個古老的故事,體會一下那時、那地,發(fā)生的那件事,讓我們走近他們,去親身感受一下這個傳唱了千年的愛情故事。 ??? 2、范文朗讀,熟悉生字詞義。 ??? 氓之蚩蚩???????????? 匪我愆期????????????? 將子無怒?????????? ?乘彼垣 ??? 載笑載言???????????? 爾卜爾筮????????????? 體無咎言??????????? 于嗟鳩兮 ??? 無食桑葚???????????? 隰則有泮????????????? 猶可說也??????????? 其黃而隕 ??? 自我徂爾???????????? 淇水湯湯????????????? 漸車帷裳??????????? 靡室勞矣 ??? 夙興夜寐???????????? 言既遂矣????????????? 躬自悼矣??????????? 無與士耽 ??? 實詞??? ??? 布:一種貨幣,并非注釋里說的,與現(xiàn)代漢語意義相同。 ??? 匪:讀上聲,并非通假。 ??? 將:讀qiāng,愿、請,如,《將進(jìn)酒》。 ??? 乘:登上。賄:財物。 ??? 說:通“脫”。 ??? 漸:讀jiān,濺濕、浸濕。 ??? 爽:差錯。 ??? 極:標(biāo)準(zhǔn)。 ??? 德:心意、情意。 ??? 罔:無。 ??? 虛詞? ??? ?以:以爾車來,以我賄遷(前“以”,用;后“以”,拿) ?乘彼? 垣,以望復(fù)關(guān)(表承接,無義)? 秋以為期(把)? ??? 其:其黃而隕(代落葉)其葉沃若(代桑樹)士貳其行(自己的)? ???? 其笑矣(語助詞,無義)不思其反(你)之:主謂之間,舒緩語氣,無實義? (桑之未落? 桑之落矣?? 女之耽兮?? 總角之宴)靜言思之(這件事) ??? 活用? ??? 爾卜爾筮(卜、筮均為名詞活用作動詞,意為用龜板、蓍草占卦)士貳其行(數(shù)詞活用為動詞,對…不專一) ??? 成語??? 二三其德、信誓旦旦、夙興夜寐。 ? ?? 3、學(xué)生自行朗讀,體會詩歌的感情,也可交流討論。理清全詩層次 ???提問:這首敘事詩寫了這對男女婚姻過程的哪幾個階段? ??? 明確:戀愛――婚變――決絕。 ?? 追問:結(jié)婚前后,詩中男女發(fā)生了什么變化? ??? 全詩分六章,第章十句(十個分句,可分成五個復(fù)句)。 ??? 第一、二章追述戀愛生活。女主人公“送子涉淇”,又勸氓“無怒”;“既見復(fù)關(guān),載笑載言”,是一個熱情、溫柔的姑娘。 ??? 第三五章追述婚后生活。第三章,以興起,總述自己得出的生活經(jīng)驗:“于嗟女兮,無與士耽!”第四章,以興起,概說“三歲食貧”,“士也罔極,二三其德”。 ??? 第六章表示“躬自悼矣”后的感受和決心:“反是不思,亦已焉哉!” ??? 作者順著“戀愛―婚變―決絕”的情節(jié)線索敘事。作者通過寫女主人公被遺棄的遭遇,塑造了一個勤勞、溫柔、堅強(qiáng)的婦女形象,表現(xiàn)了古代婦女追求自主婚姻和幸福生活的強(qiáng)烈愿望。下面是全詩敘事結(jié)構(gòu)和感情基調(diào): ??? ?[板書] ???????????????????????????? 氓 ??? (情節(jié))???? ??戀愛???????????????? 婚變???????????????? 決絕 ??? (章句)???? 第一、二章?????????? 第三、五章?????????? 第六章 ??? (詩句)???? 秋以為期???????????? 無與士耽???????????? 亦已焉戰(zhàn) ???????? ??????? 載笑載言???????????? 士貳其行 ???????????????????????????????? ?至于暴矣 ?? (基調(diào))????熱情、幸福????????? ?怨恨、沉痛???????????清醒、剛烈 ? ??? 男子???????????????? ????????????女子 ??? 婚前?????? 虛偽????????????? 熱情、善良、多情 ??? 婚后??? 兇暴、蠻橫?????????? 勤勞、剛強(qiáng)、清醒 ??? 感情不專、薄情寡義 ??? 總結(jié):男女的不平等,不僅體現(xiàn)在政治上、經(jīng)濟(jì)上,有時候還體現(xiàn)在性格上,但詩中女子的最后決絕,又使我們看到中國女子那可敬可佩的一面。

高中數(shù)學(xué)必修二課件 篇11

高中必修2課文《離騷》教學(xué)實錄

一、導(dǎo)入文本

(播放電影片段)

師 影片中的主人公是誰?

生 (齊聲)屈原

( 字幕屈原)

師 大家對屈原了解多少?給大家介紹一下

生 屈原,戰(zhàn)國末期楚國人,杰出的政治家和愛國詩人。名平,字原。他出身于楚國貴族,與懷王同祖。屈原學(xué)識淵博,對天文、地理、禮樂制度以及周以前各代的治亂興衰等都很熟悉,善外交辭令。在政治上他推崇“美政”,認(rèn)為只有圣君賢相才能把國家治理好 ,有強(qiáng)烈的憂國憂民、忠君致治的思想。他曾任左徒,輔佐懷王,

參與議論國事及應(yīng)對賓客,起草憲令及變法,對外參加合縱派與秦斗爭,兩度出使齊國。因受小人陷害,他兩次被流放,最后投汨羅江而死,以明忠貞愛國之懷。

師 非常好,他介紹的非常全面,屈原的代表作是什么呢?

生 (齊聲)《離騷》

師 那么“離騷”是什么意思呢?

生 (充滿 疑惑)

師 離通“罹”,遭遇;騷:憂愁?!半x騷”即作者遭遇憂愁而寫成的詩句。

全詩372句,是屈原的思想結(jié)晶,是他政治失敗后用血和淚寫成的一篇扣人心弦的抒發(fā)憂國之思的作品。

《離騷》是我國古代最長的抒情詩。本文選自《楚辭》。(投影)

“楚辭”是戰(zhàn)國時期興起于楚國的一種詩歌樣式,是以屈原以及宋玉的作品為主體的詩歌總集。其中最有代表性的就是本文《離騷》, 因此后人又把“楚辭”的體裁稱為“騷體”。

《離騷》與《詩經(jīng)》在文學(xué)史上并稱“風(fēng)騷”,是中國古典詩歌的兩大源頭,對后世有著深遠(yuǎn)的影響。

屈原為什么作《離騷》呢?

生 苦悶 憂愁

生 不得志

生 被流放了

師 都可以,

司馬遷《史記屈原賈生列傳》是這樣說的:

屈平疾王聽之不聰也,讒諂之蔽明也,邪曲之害公也,方正之不容也,故憂愁幽思而作《離騷》。

屈平之作《離騷》蓋自怨生也。

二、合作探究

下面讓我們走進(jìn)《離騷》,走近屈原的內(nèi)心世界。請同學(xué)們默讀速讀全文,總體了解文章內(nèi)容。

(2分鐘后)

師 對文章,大家有了初步的了解,文章比較晦澀難懂。下面請按照我們的學(xué)習(xí)小組結(jié)合課下的注釋疏通文意,不明白的可在組內(nèi)討論解決,最后再有難點可有小組長提出。

(全班七個小組進(jìn)行了熱烈的討論)

師 (通過討論,同學(xué)們提出了以下幾個問題)

1.“民生”在本文是個疑點,應(yīng)該說既是屈原的人生之義,又是人民生活之義。既哀嘆自己人生的艱難,又深深同情更廣大的人民。

2.鷙鳥之不群中的.“之”的用法是取消句子的獨立性,是助詞。

3.集芙蓉以為裳中的應(yīng)讀chang二聲。古代此字指下衣。

師 《離騷》好讀易懂嗎?

生 不好讀 太難懂了

師 這樣的文章需要反復(fù)地讀要找出規(guī)律才能品出其中的韻味。下面大家

聽聽濮存昕讀的,聽聽有什么特點?

(多媒體放錄音)

你對《離騷》的語言有什么感受?

生 美(齊聲答)

師 韻律感很強(qiáng) 屈原是通過什么手法做到的呢?

生 用對偶修辭,整首詩整齊而節(jié)奏鮮明。

生 用了很多疊音詞。

生 大量用“兮”字。使詩歌的調(diào)子回蕩頓挫,婉轉(zhuǎn)動人。

師 “兮”是有濃厚的楚國地方色彩的語氣詞,它在詩句中的位置不同,作用也不盡一樣。用在句中,表語音的延長;用在句間,表語意未竟,待下句補(bǔ)充;用在句尾,表感嘆意味。,

“兮”均用在句間,表示語意未完,等待下句補(bǔ)充。

生 押韻,不過不太明顯。

師 《離騷》是隔句用韻的,如:“固時俗之工巧兮,佰規(guī)矩而改錯;背繩

墨以追曲兮,競周容以為度”錯和度是韻腳。

此外,還有節(jié)拍的使用上,每句基本上都是三個節(jié)拍,如:民生--各有--所

樂兮,余獨--好修--以為常 寧--溘死--以流亡兮,余--不忍--為此態(tài)也。(投影文字)

師 好,同學(xué)們自由大聲讀文章,體會一下離騷的韻律美與音樂美。

(5分鐘后)

師 下面大家齊讀全文。

(而后男女分開再讀兩遍,最后再讓個別普通話較好的同學(xué)讀)

師 好,大家都應(yīng)該這樣讀。今天我們通過誦讀初步感受了離騷韻律美音樂

美,疏通了文意。下節(jié)課我們將走進(jìn)離騷走近屈原的內(nèi)心世界,感受離騷的內(nèi)在意蘊(yùn)。

作業(yè):1背誦全詩

2結(jié)合注釋和我們的討論,翻譯全文。

(下課)

第二課時

三、共同探究

師 我們先檢查背誦,進(jìn)行比賽。

(先檢查個別學(xué)生背誦,而后全班七個小組各推出一名同學(xué)進(jìn)行比賽,看誰背得最準(zhǔn)確最流暢。同學(xué)們都很積極踴躍。基礎(chǔ)較好的同學(xué)能流利的背下來。

(8分鐘后)

師 大部分同學(xué)背的很好,沒有背過的要繼續(xù)努力,下面我們一同探究屈原的內(nèi)心世界,看課文首句“長太息以掩涕兮,哀民生之多艱”,這句話表達(dá)了屈原什么養(yǎng)的思想感情呢?

生 哀傷 難過 痛苦

師 很好,為什么呢?

生 被流放了

生 不受楚王信任了。

師 用原文的話回答

生 既替余以蕙纕兮,又申之以攬茝。

師 為什么被貶黜(投影兩字)?因佩戴和采集香草嗎?

生 不是(齊聲答)

生 靈修之浩蕩。 (投影靈修浩蕩)

生 眾女嫉余之蛾眉,謠諑謂余以善淫。(投影眾女嫉余)

生 時俗之工巧,偭規(guī)矩而改錯。(投影世俗工巧)

師 君王荒淫。小人進(jìn)讒言,世俗投機(jī)取巧,還有“余不忍為此態(tài)也,鷙鳥之不群”正如屈原所說“舉世混濁而我獨清,眾人皆醉而我獨醒”,他不愿茍且不愿和小人同流合污。面對此種處境,屈原表達(dá)出了什么樣的情感呢?

生 亦余心之所善兮,雖九死其猶未悔。

生 伏清白以死直兮,固前圣之所厚。

生 體解吾猶未變兮,豈余心之可懲。

師 很好 屈原在這幾句話中都談到了死,不管是九死,還是體解。我們都

知道屈原是投江而死,屈原是不是因為這些而自殺呢?

生 不是,屈原是因為楚國國都被秦攻破而萬念俱灰才以身殉國的。

師 此時的屈原雖然很痛苦憂傷但是還是恨之深愛之切。面對這樣的政治環(huán)境,屈原怎么做的呢?

(齊讀三四段)

生 將要回去,“悔相道之不察兮,延佇乎吾將反”。

生 “回朕車以復(fù)路兮,及行迷之未遠(yuǎn)?!背弥月凡贿h(yuǎn)回歸家園。

生 “步余馬於蘭皋兮,馳椒丘且焉止息?!?/p>

生 “進(jìn)不入以離尤兮,退將復(fù)修吾初服。”修養(yǎng)自我

師 這些思想和晉代的陶淵明回歸田園的精神一樣嗎?大家討論一下

(同學(xué)們展開了激烈的討論)

生 一樣的 都是厭倦了官場生活而歸隱的

生 不一樣,陶淵明是徹底的厭倦了污濁的官場而回歸田園的,他是毅然決然的,而屈原則對楚王還抱有幻想,依戀著楚國,熱愛著楚國,希望有一天楚王能夠悔悟。

師 都有道理,可謂仁者見仁智者見智。為了表明自己的高潔屈原還怎么做的呢?

生 制芰荷以為衣兮,集芙蓉以為裳。

生 余冠之岌岌兮,長余佩之陸離

生 佩繽紛其繁飾兮,芳菲菲其彌章

師 這些打扮可謂特立獨行,與眾不同。屈原正是通過這種方式表明自的

高潔與永不向小人屈服的決心。是知識分子堅守自我的第一生吶喊。

師 縱觀全文,一個越來越清晰的藝術(shù)形象向我們走來,一個越來越鮮明

的藝術(shù)形象呈現(xiàn)在我們的腦海里,本文塑造了一個什么樣的抒情主人公呢?

生 他英俊瀟灑,他有著突出的外部形象的特征。很多屈原的畫像即使不

寫上“屈原”二字,我們也可以一眼認(rèn)出是屈原,

生 他 具有鮮明的思想性格。

他 是一位進(jìn)步的政治改革家,主張法治,主張舉賢授能。

他 主張美政,重視人民的利益和人民的作用

他 追求真理,堅強(qiáng)不屈。

師 這個形象,是中華民族精神的集中體現(xiàn),兩千多年來給了無數(shù)仁人志

士以品格與行為的示范,也給了他們以力量。

師 文章塑造了一個如此生動鮮明感人的藝術(shù)形象,運用了什么藝術(shù)手法

呢?

生 運用了比喻手法。

生 運用象征,芙蓉香草象征高潔的品性。

生 運用了對偶的修辭手法,

生 夸張,想象等等。

師 (投影總結(jié))

1.大量運用了比喻手法。如以采摘香草喻加強(qiáng)自身修養(yǎng),佩戴香草喻保持修潔等。

2.運用了不少香花、香草的名稱來象征性地表現(xiàn)政治的、思想意識方面的

比較抽象的概念,不僅使作品含蓄,長于韻味,而且從直覺上增加了作品的色彩

美。

3.運用了對偶的修辭手法,而且形式多姿多彩,在錯落中見整齊,在整齊

中又富于變化。如“高余冠之岌岌兮,長余佩之陸離”“忽反顧以游目兮,將往觀乎四荒”等,將“兮”字去掉,對偶之工與唐宋律詩對仗無異。上兩例屬于在一個完整詩句里,上下句構(gòu)成對偶?!肮虝r俗之工巧兮,偭規(guī)矩而改錯。背繩墨以追曲兮,競周容以為度?!边@一例是兩個完整詩句的上、下句構(gòu)成對偶?!扒亩种举猓逃榷猎?。”這一例是上、下句內(nèi)部各自構(gòu)成對偶,上、下句之間也構(gòu)成對偶。

“楚辭體”語言華麗豐富多彩靈活多變,通過學(xué)習(xí)《離騷》,我們領(lǐng)略了此文體的巨大魅力,豐富了我們的五彩人生,感受到了屈原的九死未悔的問偉大的愛國主義精神。他的這種精神值得我們學(xué)習(xí)。最后我們再次感受一下《離騷》的魅力。

(全班齊讀全文)

(布置作業(yè))學(xué)習(xí)了《離騷》,認(rèn)識了屈原,你一定有很多感慨,對屈原遭遇與投江有很多看法,有許多話想對屈原說。請以“屈原,我想對你說”為話題寫一篇五百字的小作文表達(dá)你的觀點。

(下課)

高中數(shù)學(xué)必修二課件 篇12

(1)理解并掌握弧度制的定義;(2)領(lǐng)會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進(jìn)行角度制與弧度制的換算;(5)角的集合與實數(shù)集 之間建立的一一對應(yīng)關(guān)系.(6) 使學(xué)生通過弧度制的學(xué)習(xí),理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.

創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會定義的合理性.根據(jù)弧度制的定義推導(dǎo)并運用弧長公式和扇形面積公式.以具體的實例學(xué)習(xí)角度制與弧度制的互化,能正確使用計算器.

通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.角的概念推廣以后,在弧度制下,角的集合與實數(shù)集 之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備.

重點: 理解并掌握弧度制定義;熟練地進(jìn)行角度制與弧度制地互化換算;弧度制的運用.

師:有人問:海口到三亞有多遠(yuǎn)時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)

顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制.他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.

在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.

1.角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.

弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題.

長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).

(師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點.請完成表格.

我們知道,角有正負(fù)零角之分,它的弧度數(shù)也應(yīng)該有正負(fù)零之分,如-π,-2π等等,一般地, 正角的弧度數(shù)是一個正數(shù),負(fù)角的弧度數(shù)是一個負(fù)數(shù),零角的弧度數(shù)是0,角的正負(fù)主要由角的旋轉(zhuǎn)方向來決定.

角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng).

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

高中數(shù)學(xué)必修二課件 篇13

1.2解三角形應(yīng)用舉例 第三課時

一、教學(xué)目標(biāo)

1、能夠運用正弦定理、余弦定理等知識和方法解決一些有關(guān)計算角度的實際問題

2、通過綜合訓(xùn)練強(qiáng)化學(xué)生的相應(yīng)能力,讓學(xué)生有效、積極、主動地參與到探究問題的過程中來,逐步讓學(xué)生自主發(fā)現(xiàn)規(guī)律,舉一反三。

3、培養(yǎng)學(xué)生提出問題、正確分析問題、獨立解決問題的能力,并激發(fā)學(xué)生的探索精神。

二、教學(xué)重點、難點

重點:能根據(jù)正弦定理、余弦定理的特點找到已知條件和所求角的關(guān)系 難點:靈活運用正弦定理和余弦定理解關(guān)于角度的問題

三、教學(xué)過程 Ⅰ.課題導(dǎo)入 [創(chuàng)設(shè)情境] 提問:前面我們學(xué)習(xí)了如何測量距離和高度,這些實際上都可轉(zhuǎn)化已知三角形的一些邊和角求其余邊的問題。然而在實際的航海生活中,人們又會遇到新的問題,在浩瀚無垠的海面上如何確保輪船不迷失方向,保持一定的航速和航向呢?今天我們接著探討這方面的測量問題。Ⅱ.講授新課 [范例講解] 例

1、如圖,一艘海輪從A出發(fā),沿北偏東75?的方向航行67.5 n mile后到達(dá)海島B,然后從B出發(fā),沿北偏東32?的方向航行54.0 n mile后達(dá)到海島C.如果下次航行直接從A出發(fā)到達(dá)C,此船應(yīng)該沿怎樣的方向航行,需要航行多少距離?(角度精確到0.1?,距離精確到0.01n mile)

學(xué)生看圖思考并講述解題思路

分析:首先根據(jù)三角形的內(nèi)角和定理求出AC邊所對的角?ABC,即可用余弦定理算出AC邊,再根據(jù)正弦定理算出AC邊和AB邊的夾角?CAB。

解:在?ABC中,?ABC=180?-75?+ 32?=137?,根據(jù)余弦定理,AC=AB2?BC2?2AB?BC?cos?ABC =67.52?54.02?2?67.5?54.0?cos137? ≈113.15 54.0sin137根據(jù)正弦定理,BC = AC sin?CAB = BCsin?ABC = ≈0.3255,113.15ACsin?CABsin?ABC?

所以 ?CAB =19.0?, 75?-?CAB =56.0?

答:此船應(yīng)該沿北偏東56.1?的方向航行,需要航行113.15n mile 例

2、在某點B處測得建筑物AE的頂端A的仰角為?,沿BE方向前進(jìn)30m,至點C處測得頂端A的仰角為2?,再繼續(xù)前進(jìn)103m至D點,測得頂端A的仰角為4?,求?的大小和建筑物AE的高。

解法一:(用正弦定理求解)由已知可得在?ACD中,AC=BC=30,AD=DC=103,?ADC =180?-4?,?103=sin2?30。因為 sin4?=2sin2?cos2? ?sin(180?4?)cos2?=? 3,得 2?=30? ? ?=15?,?在Rt?ADE中,AE=ADsin60?=15 2答:所求角?為15?,建筑物高度為15m 解法二:(設(shè)方程來求解)設(shè)DE= x,AE=h 在 Rt?ACE中,(103+ x)2 + h2=302 在 Rt?ADE中,x2+h2=(103)

2兩式相減,得x=53,h=15 ?在 Rt?ACE中,tan2?=

h103?x=3?2?=30?,?=15?

答:所求角?為15?,建筑物高度為15m 解法三:(用倍角公式求解)設(shè)建筑物高為AE=8,由題意,得

?BAC=?,?CAD=2?,AC = BC =30m , AD = CD =103m 在Rt?ACE中,sin2?=

x4------① 在Rt?ADE中,sin4?=,----② 301033,2?=30?,?=15?,AE=ADsin60?=15 2 ②?① 得 cos2?=答:所求角?為15?,建筑物高度為15m 例

3、某巡邏艇在A處發(fā)現(xiàn)北偏東45?相距9海里的C處有一艘走私船,正沿南偏東75?的方向以10海里/小時的速度向我海岸行駛,巡邏艇立即以14海里/小時的速度沿著直線方向追去,問巡邏艇應(yīng)該沿什么方向去追?需要多少時間才追趕上該走私船?

師:你能根據(jù)題意畫出方位圖?教師啟發(fā)學(xué)生做圖建立數(shù)學(xué)模型

分析:這道題的關(guān)鍵是計算出三角形的各邊,即需要引入時間這個參變量。

解:如圖,設(shè)該巡邏艇沿AB方向經(jīng)過x小時后在B處追上走私船,則CB=10x, AB=14x,AC=9, ?ACB=75?+45?=120?

?(14x)2= 92+(10x)2-2?9?10xcos120? 39?化簡得32x2-30x-27=0,即x=,或x=-(舍去)

216所以BC = 10x =15,AB =14x =21, BCsin120?15353又因為sin?BAC === ?AB21421,??BAC =38?13?,或?BAC =141?47?(鈍角不合題意,舍去)?38?13?+45?=83?13?

答:巡邏艇應(yīng)該沿北偏東83?13?方向去追,經(jīng)過1.4小時才追趕上該走私船。評注:在求解三角形中,我們可以根據(jù)正弦函數(shù)的定義得到兩個解,但作為有關(guān)現(xiàn)實生活的應(yīng)用題,必須檢驗上述所求的解是否符合實際意義,從而得出實際問題的解 Ⅲ.課堂練習(xí)

課本第16頁練習(xí) Ⅳ.課時小結(jié)

解三角形的應(yīng)用題時,通常會遇到兩種情況:

(1)已知量與未知量全部集中在一個三角形中,依次利用正弦定理或余弦定理解之。

(2)已知量與未知量涉及兩個或幾個三角形,這時需要選擇條件足夠的三角形優(yōu)先研究,再逐步在其余的三角形中求出問題的解。

Ⅴ.課后作業(yè)

《習(xí)案》作業(yè)六

高中數(shù)學(xué)必修二課件 篇14

講義1: 空 間 幾 何 體

一、教學(xué)要求:通過實物模型,觀察大量的空間圖形,認(rèn)識柱體、

錐體、臺體、球體及簡單組合體的結(jié)構(gòu)特征,并

能運用這些特征描述現(xiàn)實生活中簡單物體的結(jié)

構(gòu).

二、教學(xué)重點:讓學(xué)生感受大量空間實物及模型,概括出柱體、錐體、臺體、球體的結(jié)構(gòu)特征.

三、教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括.

四、教學(xué)過程:

(一)、新課導(dǎo)入:

1. 導(dǎo)入:進(jìn)入高中,在必修②的第一、二章中,將繼續(xù)深入研究一些空間幾何圖形,即學(xué)習(xí)立體幾何,注意學(xué)習(xí)方法:直觀感知、操作確認(rèn)、思維辯證、度量計算.

(二)、講授新課:

1. 教學(xué)棱柱、棱錐的結(jié)構(gòu)特征:

①、討論:給一個長方體模型,經(jīng)過上、下兩個底面用刀垂直切,得到的幾何體有哪些公共特征?把這些幾何體用水平力

推斜后,仍然有哪些公共特征?

②、定義:有兩個面互相平行,其余各面都是四邊形,且

每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成

的幾何體叫棱柱. → 列舉生活中的棱柱實例(三棱鏡、方磚、六角螺帽).

結(jié)合圖形認(rèn)識:底面、側(cè)面、側(cè)棱、頂點、高、對角面、對角線.

③、分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等.

表示:棱柱ABCDE-A’B’C’D’E’

④、討論:埃及金字塔具有什么幾何特征?

⑤、定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體叫棱錐.

結(jié)合圖形認(rèn)識:底面、側(cè)面、側(cè)棱、頂點、高. → 討論:棱錐如何分類及表示?

⑥、討論:棱柱、棱錐分別具有一些什么幾何性質(zhì)?有什么共同的性質(zhì)?

★棱柱:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都

是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形

★棱錐:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

2. 教學(xué)圓柱、圓錐的結(jié)構(gòu)特征:

① 討論:圓柱、圓錐如何形成?

② 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓柱;以直角三角形的一條直角邊為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓錐.

→結(jié)合圖形認(rèn)識:底面、軸、側(cè)面、母線、高. → 表示方法 ③ 討論:棱柱與圓柱、棱柱與棱錐的共同特征? → 柱體、錐體.

④ 觀察書P2若干圖形,找出相應(yīng)幾何體;

三、鞏固練習(xí):

1. 已知圓錐的軸截面等腰三角形的腰長為 5cm,,面積為12cm,求圓錐的底面半徑.

2.已知圓柱的底面半徑為3cm,,軸截面面積為24cm,求圓柱的母線長.

3.正四棱錐的底面積為46cm,側(cè)面等腰三角形面積為6cm,求正四棱錐側(cè)棱.

(四)、 教學(xué)棱臺與圓臺的結(jié)構(gòu)特征:

① 討論:用一個平行于底面的平面去截柱體和錐體,所得幾何體有何特征?

② 定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分叫做棱臺;用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分叫做圓臺.

結(jié)合圖形認(rèn)識:上下底面、側(cè)面、側(cè)棱(母線)、頂點、高.討論:棱臺的分類及表示? 圓臺的表示?圓臺可如何旋轉(zhuǎn)而得?

③ 討論:棱臺、圓臺分別具有一些什么幾何性質(zhì)? 22

★ 棱臺:兩底面所在平面互相平行;兩底面是對應(yīng)邊互相平行的相似多邊形;側(cè)面是梯形;側(cè)棱的延長線相交于一點.

★ 圓臺:兩底面是兩個半徑不同的圓;軸截面是等腰梯形;任意兩條母線的延長線交于一點;母線長都相等.

④ 討論:棱、圓與柱、錐、臺的組合得到6個幾何體. 棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐有什么關(guān)系? (以臺體的上底面變化為線索)

2.教學(xué)球體的結(jié)構(gòu)特征:

① 定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體,叫球體.結(jié)合圖形認(rèn)識:球心、半徑、直徑.→ 球的表示.

② 討論:球有一些什么幾何性質(zhì)?

③ 討論:球與圓柱、圓錐、圓臺有何關(guān)系?(旋轉(zhuǎn)體)棱臺與棱柱、棱錐有什么共性?(多面體)

3. 教學(xué)簡單組合體的結(jié)構(gòu)特征:

① 討論:礦泉水塑料瓶由哪些幾何體構(gòu)成?燈管呢?

② 定義:由柱、錐、臺、球等幾何結(jié)構(gòu)特征組合的幾何體叫簡單組合體.

4. 練習(xí):圓錐底面半徑為1cm,其中有一個內(nèi)接正方體,求這個內(nèi)接正方體的棱長. (補(bǔ)充平行線分線段成比例定理)

(五)、鞏固練習(xí):

1. 已知長方體的長、寬、高之比為4∶3∶12,對角線長為26cm, 則長、寬、高分別為多少?

2. 棱臺的上、下底面積分別是25和81,高為4,求截得這棱臺的原棱錐的高

3. 若棱長均相等的三棱錐叫正四面體,求棱長為a的正四面體的高.

★例題:用一個平行于圓錐底面的平面去截這個圓錐,截得的圓臺的上、下底面的半徑的比是1:4,截去的圓錐的母線長為3厘米,求此圓臺的母線之長。

●解:考查其截面圖,利用平行線的成比例,可得所求為9厘米。

★ 例題2:已知三棱臺ABC—A′B′C′ 的上、下兩底均為正三角形,邊長分別為3和6,平行于底面的截面將側(cè)棱分為1:2兩部分,求截面的面積。(4)

★ 圓臺的上、下度面半徑分別為6和12,平行于底面的截面分高為2:1兩部分,求截面的面積。(100π)

▲ 解決臺體的平行于底面的截面問題,還臺為錐是行之有效的一種方法。

講義2、空間幾何體的三視圖和直視圖

一、教學(xué)要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體. 掌握斜二測畫法;能用斜二測

畫法畫空間幾何體的直觀圖.

二、教學(xué)重點:畫出三視圖、識別三視圖.

三、教學(xué)難點:識別三視圖所表示的空間幾何體.

四、教學(xué)過程:

(一)、新課導(dǎo)入:

1. 討論:能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體?工程師如何制作工程設(shè)計圖紙?

2. 引入:從不同角度看廬山,有古詩:“橫看成嶺側(cè)成峰,遠(yuǎn)

近高低各不同。不識廬山真面目,只緣身在此山中?!?對

于我們所學(xué)幾何體,常用三視圖和直觀圖來畫在紙上.

三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形. 用途:工程建設(shè)、機(jī)械制造、日常生活.

(二)、講授新課:

1. 教學(xué)中心投影與平行投影:

① 投影法的提出:物體在光線的照射下,就會在地面或墻壁上

產(chǎn)生影子。人們將這種自然現(xiàn)象加以的抽象,總結(jié)其

中的規(guī)律,提出了投影的方法。

② 中心投影:光由一點向外散射形成的投影。其投影的大小隨

物體與投影中心間距離的變化而變化,所以其投影不

能反映物體的實形.

③ 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.

→討論:點、線、三角形在平行投影后的結(jié)果.

2. 教學(xué)柱、錐、臺、球的三視圖:

① 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);

側(cè)視圖(從左向右)、俯視圖

② 討論:三視圖與平面圖形的關(guān)系? → 畫出長方體的三視圖,

并討論所反應(yīng)的長、寬、高

③ 結(jié)合球、圓柱、圓錐的模型,從正面(自前而后)、側(cè)面(自

左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結(jié)果. → 正視圖、側(cè)視圖、俯視圖

③ 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖. (

④ 討論:三視圖,分別反應(yīng)物體的哪些關(guān)系(上下、左右、前后)?哪些數(shù)量(長、寬、高)

正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的`位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

⑤ 討論:根據(jù)以上的三視圖,如何逆向得到幾何體的形狀.(試變化以上的三視圖,說出相應(yīng)幾何體的擺放)

3. 教學(xué)簡單組合體的三視圖:

① 畫出教材P16 圖(2)、(3)、(4)的

三視圖.

② 從教材P16思考中三視圖,說出幾何體.

4. 練習(xí):

① 畫出正四棱錐的三視圖.

④ 畫出右圖所示幾何體的三視圖.

③ 右圖是一個物體的正視圖、左視圖和俯視圖,

試描述該物體的形狀.

(三)復(fù)習(xí)鞏固

高中數(shù)學(xué)必修二課件 篇15

進(jìn)一步熟悉正、余弦定理內(nèi)容,能熟練運用余弦定理、正弦定理解答有關(guān)問題,如判斷三角形的形狀,證明三角形中的三角恒等式.

一、復(fù)習(xí)準(zhǔn)備:

1. 寫出正弦定理、余弦定理及推論等公式.

2. 討論各公式所求解的三角形類型.

二、講授新課:

1. 教學(xué)三角形的解的討論:

② 練習(xí):在△ABC中,已知下列條件,判斷三角形的解的情況.

2. 教學(xué)正弦定理與余弦定理的活用:

① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦.

分析:已知條件可以如何轉(zhuǎn)化?→ 引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角.

② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.

分析:由三角形的什么知識可以判別? → 求最大角余弦,由符號進(jìn)行判斷

分析:如何將邊角關(guān)系中的邊化為角? →再思考:又如何將角化為邊?

3. 小結(jié):三角形解的情況的討論;判斷三角形類型;邊角關(guān)系如何互化.

高中數(shù)學(xué)必修一課件精品


居安思危,思則有備,有備無患。當(dāng)幼兒園教師的工作遇到難題時,我們經(jīng)常會用提前準(zhǔn)備好的資料進(jìn)行參考。資料是時代的記錄,它是產(chǎn)生于人類實踐活動。參考資料有助于我們的工作進(jìn)一步發(fā)展。那么,你知道有哪些常見幼師資料嗎?以下是小編為大家收集的“高中數(shù)學(xué)必修一課件精品”供你參考,希望能夠幫助到大家。

高中數(shù)學(xué)必修一課件(篇1)

學(xué)習(xí)目標(biāo):1、能說出作者托石榴之物,言頌揚我們民族美好情操之志的文章主旨。

2、學(xué)習(xí)作者狀物的形神兼?zhèn)洹?/strong>

3、品位本文形象生動、準(zhǔn)確凝練的語言。

課前學(xué)習(xí):1、積累文中的字詞,劃出文中描寫生動的地方。

1 創(chuàng)設(shè)情景導(dǎo)入新課:出示石榴的圖片,請同學(xué)用自己的語言描繪石榴花的外型及自己的感受。導(dǎo)入新課。? 觀察、思考、交流

2 要求學(xué)生自讀課文,解決生詞,并嘗試歸納各段段意。 自由朗讀,板書生字詞和各段段意。

3 指導(dǎo)學(xué)生準(zhǔn)確概括段意的方法,如抓住中心句,或關(guān)鍵字詞。 思考,作批注

5 問題設(shè)計:根據(jù)各段段意,你能理出作者的寫作思路嗎?(包括描寫順序) 交流、評價

1 問題創(chuàng)設(shè):出示對石榴的介紹,引導(dǎo)學(xué)生與課文語言進(jìn)行對比。教師提供語言賞析示范。 比較閱讀,品味語言,根據(jù)示范作批注。? 石榴,一名“安石榴”。石榴科。落葉灌木或小喬木。有針狀枝,葉對生,倒卵形或長橢圓形,無毛。夏季開花,花有結(jié)實花和不結(jié)實花兩種,常呈橙紅色,亦有黃色或白色。

2 組織交流、評價,引導(dǎo)學(xué)生也要注意說明語言準(zhǔn)確的特點。 組內(nèi)交流,討論

3?? 問題設(shè)計:作者為何對石榴花獨有情鐘?請找出文中的關(guān)鍵句并結(jié)合寫作背景談?wù)効捶?。在學(xué)生回答的基礎(chǔ)上明確課文托物言志的主旨。 劃出文中的關(guān)鍵句。補(bǔ)充寫作背景。

1 布置任務(wù):下面是兩個寓理于物的例句,請你另選一件物品(例如“鏡子”、“風(fēng)箏”……),寫一個既符合物品特點,又包含生活道理的句子。 練習(xí)、交流 例句:?(1)蠟燭:站得不端正的,必然淚多命短。?(2)月亮:正因為有圓有缺,才使人不感到乏味。?鏡子:?風(fēng)箏:

高中數(shù)學(xué)必修一課件(篇2)

一)、培養(yǎng)良好的學(xué)習(xí)興趣。

兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者?!币馑颊f,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學(xué),喜歡學(xué),這就是興趣。興趣是最好的老師,有興趣才能產(chǎn)生愛好,愛好它就要去實踐它,達(dá)到樂在其中,有興趣才會形成學(xué)習(xí)的主動性和積極性。在數(shù)學(xué)學(xué)習(xí)中,我們把這種從自發(fā)的感性的樂趣出發(fā)上升為自覺的理性的“認(rèn)識”過程,這自然會變?yōu)榱⒅緦W(xué)好數(shù)學(xué),成為數(shù)學(xué)學(xué)習(xí)的成功者。那么如何才能建立好的學(xué)習(xí)數(shù)學(xué)興趣呢?

1、課前預(yù)習(xí),對所學(xué)知識產(chǎn)生疑問,產(chǎn)生好奇心。

2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價,變?yōu)楸薏邔W(xué)習(xí)的動力。

3、思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。

4、聽課中注意老師講解時的數(shù)學(xué)思想,多問為什么要這樣思考,這樣的方法怎樣是產(chǎn)生的?

5、把概念回歸自然。所有學(xué)科都是從實際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實生活,如角的概念、直角坐標(biāo)系的產(chǎn)生、極坐標(biāo)系的產(chǎn)生都是從實際生活中抽象出來的。只有回歸現(xiàn)實才能對概念的理解切實可靠,在應(yīng)用概念判斷、推理時會準(zhǔn)確。

二)、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。

習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣還包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。

三)、有意識培養(yǎng)自己的各方面能力。

數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時學(xué)習(xí)中要注意開發(fā)不同的學(xué)習(xí)場所,參與一切有益的學(xué)習(xí)實踐活動,如數(shù)學(xué)第二課堂、數(shù)學(xué)競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進(jìn)行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設(shè)計“智力課”和“智力問題”比如對習(xí)題的解答時的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達(dá)到自己各方面能力的全面發(fā)展。

高中數(shù)學(xué)必修一課件(篇3)

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

1、 知識與技能

(1)進(jìn)一步理解表達(dá)式y(tǒng)=Asin(ωx+φ),掌握A、φ、ωx+φ的含義;(2)熟練掌握由 的圖象得到函數(shù) 的圖象的方法;(3)會由函數(shù)y=Asin(ωx+φ)的圖像討論其性質(zhì);(4)能解決一些綜合性的問題。

2、 過程與方法

通過具體例題和學(xué)生練習(xí),使學(xué)生能正確作出函數(shù)y=Asin(ωx+φ)的圖像;并根據(jù)圖像求解關(guān)系性質(zhì)的問題;講解例題,總結(jié)方法,鞏固練習(xí)。

3、 情感態(tài)度與價值觀

通過本節(jié)的學(xué)習(xí),滲透數(shù)形結(jié)合的思想;通過學(xué)生的親身實踐,引發(fā)學(xué)生學(xué)習(xí)興趣;創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度;讓學(xué)生感受數(shù)學(xué)的嚴(yán)謹(jǐn)性,培養(yǎng)學(xué)生邏輯思維的縝密性。

教學(xué)重難點

重點:函數(shù)y=Asin(ωx+φ)的圖像,函數(shù)y=Asin(ωx+φ)的性質(zhì)。

難點: 各種性質(zhì)的應(yīng)用。

教學(xué)工具

投影儀

教學(xué)過程

【創(chuàng)設(shè)情境,揭示課題】

函數(shù)y=Asin(ωx+φ)的性質(zhì)問題,是三角函數(shù)中的重要問題,是高中數(shù)學(xué)的重點內(nèi)容,也是高考的熱點,因為,函數(shù)y=Asin(ωx+φ)在我們的實際生活中可以找到很多模型,與我們的生活息息相關(guān)。

五、歸納整理,整體認(rèn)識

(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

六、布置作業(yè): 習(xí)題1-7第4,5,6題.

課后小結(jié)

歸納整理,整體認(rèn)識

(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

課后習(xí)題

作業(yè): 習(xí)題1-7第4,5,6題.

板書

人教版高中數(shù)學(xué)必修4備課教案5

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

一、知識與技能

(1)理解并掌握弧度制的定義;(2)領(lǐng)會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進(jìn)行角度制與弧度制的換算;(5)角的集合與實數(shù)集 之間建立的一一對應(yīng)關(guān)系.(6) 使學(xué)生通過弧度制的學(xué)習(xí),理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.

二、過程與方法

創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會定義的合理性.根據(jù)弧度制的定義推導(dǎo)并運用弧長公式和扇形面積公式.以具體的實例學(xué)習(xí)角度制與弧度制的互化,能正確使用計算器.

三、情態(tài)與價值

通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.角的概念推廣以后,在弧度制下,角的集合與實數(shù)集 之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備.

教學(xué)重難點

重點: 理解并掌握弧度制定義;熟練地進(jìn)行角度制與弧度制地互化換算;弧度制的運用.

難點: 理解弧度制定義,弧度制的運用.

教學(xué)工具

投影儀等

教學(xué)過程

一、 創(chuàng)設(shè)情境,引入新課

師:有人問:海口到三亞有多遠(yuǎn)時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)

顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制.他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.

在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.

二、講解新課

1.角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.

弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題.

2.弧度制的定義

長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).

(師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點.請完成表格.

我們知道,角有正負(fù)零角之分,它的弧度數(shù)也應(yīng)該有正負(fù)零之分,如-π,-2π等等,一般地, 正角的弧度數(shù)是一個正數(shù),負(fù)角的弧度數(shù)是一個負(fù)數(shù),零角的弧度數(shù)是0,角的正負(fù)主要由角的旋轉(zhuǎn)方向來決定.

角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng).

四、課堂小結(jié)

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

五、作業(yè)布置

作業(yè):習(xí)題1.1 A組第7,8,9題.

課后小結(jié)

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

課后習(xí)題

作業(yè):習(xí)題1.1 A組第7,8,9題.

板書

高中數(shù)學(xué)必修一課件(篇4)

一、概述

教材內(nèi)容:等比數(shù)列的概念和通項公式的推導(dǎo)及簡單應(yīng)用 教材難點:靈活應(yīng)用等比數(shù)列及通項公式解決一般問題 教材重點:等比數(shù)列的概念和通項公式

二、教學(xué)目標(biāo)分析

1. 知識目標(biāo)

1)

2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項公式及其推導(dǎo)

2.能力目標(biāo)

1)學(xué)會通過實例歸納概念

2)通過學(xué)習(xí)等比數(shù)列的通項公式及其推導(dǎo)學(xué)會歸納假設(shè)

3)提高數(shù)學(xué)建模的能力

3、情感目標(biāo):

1)充分感受數(shù)列是反映現(xiàn)實生活的模型

2)體會數(shù)學(xué)是來源于現(xiàn)實生活并應(yīng)用于現(xiàn)實生活

3)數(shù)學(xué)是豐富多彩的而不是枯燥無味的

三、教學(xué)對象及學(xué)習(xí)需要分析

1、 教學(xué)對象分析:

1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對各方面的知識有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。

2)對歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)

2、學(xué)習(xí)需要分析:

四. 教學(xué)策略選擇與設(shè)計

1.課前復(fù)習(xí)

1)復(fù)習(xí)等差數(shù)列的概念及通向公式

2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)

2.情景導(dǎo)入

高中數(shù)學(xué)必修一課件(篇5)

高中數(shù)學(xué)必修二課件


在高中數(shù)學(xué)課程中,必修二是重要的一門課程,它為學(xué)生提供了一系列基礎(chǔ)的數(shù)學(xué)知識和技能。而課件作為現(xiàn)代教學(xué)中不可或缺的工具,能夠幫助老師更好地向?qū)W生傳授知識。本文將詳細(xì)介紹高中數(shù)學(xué)必修二課件的內(nèi)容和作用,以及如何設(shè)計一份優(yōu)秀的數(shù)學(xué)課件。


高中數(shù)學(xué)必修二課程主要包括以下幾個方面的內(nèi)容:函數(shù)、三角函數(shù)、指數(shù)與對數(shù)、數(shù)列與數(shù)學(xué)推理。這些內(nèi)容構(gòu)建了學(xué)生在數(shù)學(xué)學(xué)科中的基礎(chǔ),為學(xué)生打下了堅實的數(shù)學(xué)基礎(chǔ)。通過使用課件,老師可以將這些抽象的概念轉(zhuǎn)化為具體形象的展示,提高學(xué)生的學(xué)習(xí)興趣和積極性。


在函數(shù)部分,老師可以設(shè)計動態(tài)的圖形展示,通過改變函數(shù)的參數(shù)值,觀察函數(shù)圖像的變化,并且與函數(shù)的性質(zhì)緊密結(jié)合,幫助學(xué)生理解函數(shù)的定義和性質(zhì)。例如,可以設(shè)計一個課件,展示正弦函數(shù)的圖像隨頻率和振幅的變化而變化,讓學(xué)生對正弦函數(shù)的周期性、振幅、相位有直觀的認(rèn)識。


在三角函數(shù)部分,課件可以選擇一些常見的三角函數(shù)關(guān)系,通過動畫的方式展示它們之間的關(guān)系。例如,可以展示正弦函數(shù)和余弦函數(shù)的圖像在平面直角坐標(biāo)系中的變化規(guī)律,讓學(xué)生理解它們之間的相互聯(lián)系。同時,課件還可以添加一些典型的應(yīng)用題,如測量高樓的高度等,讓學(xué)生通過解答實際問題來理解三角函數(shù)的應(yīng)用價值。


指數(shù)與對數(shù)是高中數(shù)學(xué)中比較抽象且重要的一部分。在這節(jié)課中,老師可以通過課件將指數(shù)與對數(shù)的轉(zhuǎn)化關(guān)系以及性質(zhì)進(jìn)行詳細(xì)解釋,并通過一些實例的計算來幫助學(xué)生更好地掌握運用指數(shù)與對數(shù)的技巧。例如,可以設(shè)計一個課件,通過動畫的方式展示指數(shù)和對數(shù)之間的轉(zhuǎn)化公式,讓學(xué)生觀察其中的規(guī)律,并通過實例演示如何運用指數(shù)和對數(shù)求解復(fù)雜的問題。


數(shù)列與數(shù)學(xué)推理是高中數(shù)學(xué)中重要的內(nèi)容之一。在這部分中,老師可以設(shè)計一些關(guān)于數(shù)列的圖形展示,并通過數(shù)學(xué)歸納法的證明過程,幫助學(xué)生提高數(shù)學(xué)推理的能力。例如,可以設(shè)計一個課件,展示某一特定數(shù)列的圖像,并通過分析數(shù)列的規(guī)律,引導(dǎo)學(xué)生通過歸納證明數(shù)列的遞推公式。這樣一來,學(xué)生不僅理解了數(shù)列的概念,而且還提高了自己的數(shù)學(xué)思維和推理能力。


設(shè)計一份優(yōu)秀的數(shù)學(xué)課件需要遵循以下幾個原則:一是內(nèi)容的合理性和系統(tǒng)性,課件的內(nèi)容應(yīng)該與教學(xué)大綱保持一致,且有邏輯性,能夠幫助學(xué)生形成完整的知識體系。二是生動的展示方式,通過動畫、圖像等多媒體手段將抽象的數(shù)學(xué)概念轉(zhuǎn)化為形象的展示,提高學(xué)生對知識點的理解和記憶。三是適當(dāng)?shù)幕有?,通過設(shè)計一些小游戲或問答環(huán)節(jié),激發(fā)學(xué)生的參與積極性,增強(qiáng)學(xué)習(xí)效果。四是簡潔明了的表達(dá),盡量避免過多的文字說明,通過簡潔明了的圖片和文字,讓學(xué)生更快地理解課件的內(nèi)容。


小編認(rèn)為,高中數(shù)學(xué)必修二課件在數(shù)學(xué)教學(xué)中有著重要的作用。它不僅可以幫助學(xué)生理解抽象的數(shù)學(xué)概念,提高學(xué)習(xí)興趣和積極性,還可以加強(qiáng)學(xué)生的數(shù)學(xué)思維能力和推理能力。設(shè)計優(yōu)秀的數(shù)學(xué)課件需要注重內(nèi)容的合理性和系統(tǒng)性,通過生動的展示方式和適當(dāng)?shù)幕有?,讓學(xué)生更好地掌握數(shù)學(xué)知識。相信通過優(yōu)秀的數(shù)學(xué)課件,學(xué)生們在高中數(shù)學(xué)必修二課程中會有更好的學(xué)習(xí)效果。

高中數(shù)學(xué)必修一課件(篇6)

(1)棱柱:

幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

(3)棱臺:

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形.

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形.

(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形.

(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑.

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半.

(1)幾何體的表面積為幾何體各個面的面積的和.

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.

②過兩點的直線的斜率公式:

注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到.

注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.

當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

(4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

(為參數(shù)),其中直線不在直線系中.

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

交點坐標(biāo)即方程組的一組解.

在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進(jìn)行求解.

高中數(shù)學(xué)必修一課件(篇7)

高一數(shù)學(xué)必修二提綱

1:一般式:Ax+By+C=0(A、B不同時為0)適用于所有直線

K=-A/B,b=-C/B

A1/A2=B1/B2≠C1/C2←→兩直線平行

A1/A2=B1/B2=C1/C2←→兩直線重合

橫截距a=-C/A

縱截距b=-C/B

2:點斜式:y-y0=k(x-x0)適用于不垂直于x軸的直線

表示斜率為k,且過(x0,y0)的直線

3:截距式:x/a+y/b=1適用于不過原點或不垂直于x軸、y軸的直線

表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線

4:斜截式:y=kx+b適用于不垂直于x軸的直線

表示斜率為k且y軸截距為b的直線

5:兩點式:適用于不垂直于x軸、y軸的直線

表示過(x1,y1)和(x2,y2)的直線

(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

6:交點式:f1(x,y)x+f2(x,y)=0適用于任何直線

表示過直線f1(x,y)=0與直線f2(x,y)=0的交點的直線

7:點平式:f(x,y)-f(x0,y0)=0適用于任何直線

表示過點(x0,y0)且與直線f(x,y)=0平行的直線

8:法線式:x·cosα+ysinα-p=0適用于不平行于坐標(biāo)軸的直線

過原點向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長度

9:點向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)適用于任何直線

表示過點(x0,y0)且方向向量為(u,v)的直線

10:法向式:a(x-x0)+b(y-y0)=0適用于任何直線

表示過點(x0,y0)且與向量(a,b)垂直的直線

11:點到直線距離

點P(x0,y0)到直線Ι:Ax+By+C=0的距離

d=|Ax0+By0+C|/√A2+B2

兩平行線之間距離

若兩平行直線的方程分別為:

Ax+By+C1=OAx+By+C2=0則

這兩條平行直線間的距離d為:

d=丨C1-C2丨/√(A2+B2)

12:各種不同形式的直線方程的局限性:

(1)點斜式和斜截式都不能表示斜率不存在的直線;

(2)兩點式不能表示與坐標(biāo)軸平行的直線;

(3)截距式不能表示與坐標(biāo)軸平行或過原點的直線;

(4)直線方程的一般式中系數(shù)A、B不能同時為零。

13:位置關(guān)系

若直線L1:A1x+B1y+C1=0與直線L2:A2x+B2y+C2=0

1.當(dāng)A1B2-A2B1≠0時,相交

2.A1/A2=B1/B2≠C1/C2,平行

3.A1/A2=B1/B2=C1/C2,重合

4.A1A2+B1B2=0,垂直

高中數(shù)學(xué)快速解題法

方法1、在解題的過程中,是一個思維的過程。一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,只要順著這些解題的思路,就可以很容易的找到習(xí)題的答案。

方法2、做一道題目時,最重要的就是審題。審題的第一步就是讀題。讀題時要慢,一邊讀、一邊思考,要特別注意每一句話的內(nèi)在含義,并從中找出隱含條件。很多人并沒有養(yǎng)成這種習(xí)慣,結(jié)果常常會在做題的時候漏掉一些信息,所以在解題的時候要特別注意審題。

方法3、在做了一定數(shù)量的習(xí)題后,就會對所涉及到的知識、解題方法有比較清晰的了解。這個時候就需要將這些知識進(jìn)行歸納總結(jié),以便以后的解題思路更加清晰,達(dá)到舉一反三的效果,這樣做數(shù)學(xué)題的速度就會大大提升了。

方法4、做題只是學(xué)習(xí)過程中的一部分,所以不能為了解題而解題。解題時,腦海中的概念越清晰、對公式、定理越熟悉,解題的速度就越快。所以在解題時,應(yīng)該先回歸課本,熟悉基本內(nèi)容,理解其正確的含義,接著再做后面的練習(xí)。

方法5、有些題目,尤其是幾何體,一定要學(xué)會畫圖。畫圖是一個把抽象思維變成形象思維的過程,會大大降低解題的難度。很多題目,只要分析圖畫出來之后,其中的關(guān)系就會變得一目了然。所以學(xué)會畫圖,對于提高解題速度非常重要。

方法6、人對事物的認(rèn)知總是會有一個從易到難的過程,簡單的問題做多了,概念清晰了,對解題的步驟熟悉了,解題時就會形成跳躍思維,解題的速度也會大大的提高。所以在學(xué)習(xí)時,要根據(jù)自己的能力,去解那些看似簡單,卻比較重要的習(xí)題,來不斷提高解題速度和解題能力。隨著速度和能力的提高,在逐漸的去增加難度,就會事半功倍了。

方法7、習(xí)慣很重要,很多同學(xué)做題速度慢就是平時做作業(yè)的時候習(xí)慣了拖延時間,從而導(dǎo)致了不好的解題習(xí)慣。所以想要提高做題速度,就要先改變拖沓的習(xí)慣。比較有效的方法是限時答題,在平常做作業(yè)的時候,給自己規(guī)定一個時間,先不管正確率,首先要保證在規(guī)定時間內(nèi)完成數(shù)學(xué)作業(yè),然后在去改正錯誤。時間長了之后,自然會改正拖延時間的壞毛病。

學(xué)好數(shù)學(xué)的建議

學(xué)數(shù)學(xué)沒有捷徑,只能踏踏實實做題,把每一種類型題都做會了,那么數(shù)學(xué)才有可能學(xué)好。在高中,沒有必要去買數(shù)學(xué)輔導(dǎo)資料,只要把教材看透了,就能學(xué)好數(shù)學(xué)。課本怎么看?老師講課之前看,看完例題做課后習(xí)題,把教材提前學(xué)會了。上課干什么?老師講課還需認(rèn)真聽,然后再理解一遍,把定理、公式、定義等都背下來。當(dāng)然,數(shù)學(xué)書不止看一遍,當(dāng)做題不會時,還需要翻閱,當(dāng)考試前也可以復(fù)習(xí)課本,平時還可以去看。

數(shù)學(xué)光看書還遠(yuǎn)遠(yuǎn)不夠,做題才是根本。課后練習(xí)冊、數(shù)學(xué)卷子每道題都要認(rèn)真去做,遇到不會的題目想方設(shè)法去解,實在做不出來了劃重點,等課上重點去聽,課下自己再重新做一遍,隔幾天再拿出來做一遍。

上數(shù)學(xué)課也是要做筆記的,做筆記能夠讓你復(fù)習(xí)時思路更清晰,看書時重點更明確,而且一些重要的東西書上往往沒有,只有在筆記上才會有所體現(xiàn),所以筆記要好好整理。但是,做筆記不能影響聽課效果,如果跟不上可以課后借同學(xué)的抄。

高中數(shù)學(xué)必修一課件(篇8)

教學(xué)目標(biāo)

A、知識目標(biāo):

掌握等差數(shù)列前n項和公式的推導(dǎo)方法;掌握公式的運用。

B、能力目標(biāo):

(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

(2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。

(3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。

C、情感目標(biāo):(數(shù)學(xué)文化價值)

(1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。

(2)通過公式的運用,樹立學(xué)生"大眾教學(xué)"的思想意識。

(3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗,產(chǎn)生熱愛數(shù)學(xué)的情感。

教學(xué)重點:

等差數(shù)列前n項和的公式。

教學(xué)難點:

等差數(shù)列前n項和的公式的靈活運用。

教學(xué)方法:

啟發(fā)、討論、引導(dǎo)式。

教具:

現(xiàn)代教育多媒體技術(shù)。

教學(xué)過程

一、創(chuàng)設(shè)情景,導(dǎo)入新課。

師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時,一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

例1,計算:1+2+3+4+5+6+7+8+9+10。

這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。

二、教授新課(嘗試推導(dǎo))

師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項和Sn計算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請一位學(xué)生板演。

上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。

師:通過以上幾例,說明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時希望大家在學(xué)習(xí)中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學(xué)習(xí)。

高中數(shù)學(xué)必修一課件(篇9)

本節(jié)課重在探究等比數(shù)列的前n項和公式的推導(dǎo)及簡單的應(yīng)用。教學(xué)中注重公式的形成過程及數(shù)學(xué)思想方法的滲透,并揭示公式的結(jié)構(gòu)特征和內(nèi)在聯(lián)系.就知識的應(yīng)用價值來看,它是從大量數(shù)學(xué)問題和現(xiàn)實問題中抽象出來的模型,在公式推導(dǎo)中所蘊(yùn)含的數(shù)學(xué)思想方法在各種數(shù)列求和問題中有著廣泛的應(yīng)用.就內(nèi)容的人文價值上看,它的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納、猜想,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生數(shù)學(xué)的思考問題的良好載體.

知識與技能: 掌握等比數(shù)列的前n項和公式以及推導(dǎo)方法;會用等比數(shù)列的前n項和公式解決有關(guān)等比數(shù)列的一些簡單問題.

過程與方法: 經(jīng)歷等比數(shù)列前n 項和的推導(dǎo)過程,總結(jié)數(shù)列求和方法,體會數(shù)學(xué)中的思想方法.

情感態(tài)度與價值觀:通過教材中的實際引例,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性及學(xué)習(xí)數(shù)學(xué)的主動性.

[創(chuàng)設(shè)情境]

[分析問題]如果把各格所放的麥粒數(shù)看成是一個數(shù)列,我們可以得到一個等比數(shù)列,它的首項是1,公比是2,求第一個格子到第64個格子各格所放的麥粒數(shù)總合就是求這個等比數(shù)列的前64項的和。下面我們先來推導(dǎo)等比數(shù)列的前n項和公式。

高中數(shù)學(xué)必修一課件(篇10)

教材分析

本節(jié)課重在探究等比數(shù)列的前n項和公式的推導(dǎo)及簡單的應(yīng)用。教學(xué)中注重公式的形成過程及數(shù)學(xué)思想方法的滲透,并揭示公式的結(jié)構(gòu)特征和內(nèi)在聯(lián)系.就知識的應(yīng)用價值來看,它是從大量數(shù)學(xué)問題和現(xiàn)實問題中抽象出來的模型,在公式推導(dǎo)中所蘊(yùn)含的數(shù)學(xué)思想方法在各種數(shù)列求和問題中有著廣泛的應(yīng)用.就內(nèi)容的人文價值上看,它的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納、猜想,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生數(shù)學(xué)的思考問題的良好載體.

教學(xué)目標(biāo)

知識與技能: 掌握等比數(shù)列的前n項和公式以及推導(dǎo)方法;會用等比數(shù)列的前n項和公式解決有關(guān)等比數(shù)列的一些簡單問題.

過程與方法: 經(jīng)歷等比數(shù)列前n 項和的推導(dǎo)過程,總結(jié)數(shù)列求和方法,體會數(shù)學(xué)中的思想方法.

情感態(tài)度與價值觀:通過教材中的實際引例,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性及學(xué)習(xí)數(shù)學(xué)的主動性.

教學(xué)重點

等比數(shù)列的前n項和公式推導(dǎo)及公式的簡單應(yīng)用

教學(xué)難點

等比數(shù)列的前n項和公式推導(dǎo)過程和思想方法

教學(xué)過程

Ⅰ、課題導(dǎo)入

[創(chuàng)設(shè)情境]

[提出問題] “國王對國際象棋的發(fā)明者的獎勵”的故事

Ⅱ、講授新課

[分析問題]如果把各格所放的麥粒數(shù)看成是一個數(shù)列,我們可以得到一個等比數(shù)列,它的首項是1,公比是2,求第一個格子到第64個格子各格所放的麥粒數(shù)總合就是求這個等比數(shù)列的前64項的和。下面我們先來推導(dǎo)等比數(shù)列的前n項和公式。

高中數(shù)學(xué)必修一課件(篇11)

專題八當(dāng)今世界經(jīng)濟(jì)的全球化趨勢

通史概要:

當(dāng)今世界經(jīng)濟(jì)發(fā)展有兩個明顯的趨勢:一是世界經(jīng)濟(jì)區(qū)域集團(tuán)化,二是世界經(jīng)濟(jì)全球化。世界經(jīng)濟(jì)區(qū)域集團(tuán)化是最終實現(xiàn)經(jīng)濟(jì)全球化的重要步驟和途徑,經(jīng)濟(jì)全球化則是區(qū)域經(jīng)濟(jì)集團(tuán)化的最終歸宿。

世界經(jīng)濟(jì)區(qū)域集團(tuán)化是生產(chǎn)力高度發(fā)展的必然產(chǎn)物,是生產(chǎn)國家化、國際分工向縱深發(fā)展需要加強(qiáng)合作的結(jié)果,也是世界經(jīng)濟(jì)競爭激烈的表現(xiàn)。它產(chǎn)生的原因有:現(xiàn)代科技的發(fā)展、國際間經(jīng)濟(jì)競爭和客觀上存在的分工。區(qū)域集團(tuán)化的發(fā)展分為三個階段:第一階段為五六十年代,世界經(jīng)濟(jì)集團(tuán)化的趨勢主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團(tuán)化成為一種世界經(jīng)濟(jì)現(xiàn)象。歐洲區(qū)域集團(tuán)化趨勢進(jìn)一步發(fā)展,如歐共體的建立;一些發(fā)展中國家的地區(qū)性經(jīng)濟(jì)集團(tuán)也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團(tuán)化掀起新的浪潮,進(jìn)入了較高層次的經(jīng)濟(jì)一體化時期,出現(xiàn)了歐盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織三大區(qū)域經(jīng)濟(jì)集團(tuán)。

世界經(jīng)濟(jì)全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史趨勢。它突出的表現(xiàn)在國際貿(mào)易、國際投資、國際金融和跨國公司的發(fā)展。經(jīng)濟(jì)全球化的過程中的問題是:在經(jīng)濟(jì)全球化的過程中,不可避免地把資本主義固有的矛盾擴(kuò)展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機(jī)、全球性的經(jīng)濟(jì)金融危機(jī)、恐怖組織活動猖獗等等,直接影響到人類的生存與發(fā)展。

我國在當(dāng)今世界經(jīng)濟(jì)發(fā)展趨勢中,作為發(fā)展中國家,應(yīng)該如何面對機(jī)遇和挑戰(zhàn),成了新時期經(jīng)濟(jì)發(fā)展人們共同關(guān)心的話題。從中國加入亞太經(jīng)合組織、加入世界貿(mào)易組織,加強(qiáng)同東盟的聯(lián)系的史實中,我們的態(tài)度是:在堅持獨立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強(qiáng)國際的合作與交流,參與國際競爭,抓住機(jī)遇,接受挑戰(zhàn),在國際的競爭和合作中,提高我國的經(jīng)濟(jì)發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經(jīng)濟(jì)發(fā)展趨勢這一經(jīng)濟(jì)現(xiàn)象,樹立正確的.發(fā)展觀。

課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。

教學(xué)目標(biāo):

(1)知識與能力:分析第二次世界大戰(zhàn)后西歐經(jīng)濟(jì)進(jìn)入“黃金時代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認(rèn)識歐洲聯(lián)盟成立對世界經(jīng)濟(jì)和政治格局的影響。

概述歐元產(chǎn)生的影響,培養(yǎng)多角度、多層次理解問題的能力。

(2)過程與方法:通過討論西歐經(jīng)濟(jì)在二戰(zhàn)后進(jìn)入“黃金時代”的共同原因,進(jìn)一步思考中國的社會主義建設(shè)應(yīng)如何借鑒其合理的方法與正確的經(jīng)驗,學(xué)習(xí)用聯(lián)系的方法看待問題,提高理論指導(dǎo)實踐的能力;通過分組學(xué)習(xí),搜集“歐共體”及“歐盟”成立的資料,了解整個歐洲走向聯(lián)合的過程,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。

(3)情感、態(tài)度與價值觀:通過對歐洲走向聯(lián)合這段歷史的學(xué)習(xí),認(rèn)識當(dāng)今國際社會國家間團(tuán)結(jié)協(xié)作的重要性,樹立國際意識;通過對歐洲走向聯(lián)合的史實的歸納,得出一個別國家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結(jié)合我國的實際,進(jìn)一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會主義現(xiàn)代化建設(shè)而奮斗的責(zé)任感。

教學(xué)建議:

1、本課共有三個方面的內(nèi)容,“西歐經(jīng)濟(jì)的'黃金時代'”主要講述:二戰(zhàn)后的20世紀(jì)50年代到60年代,西歐各國經(jīng)濟(jì)在恢復(fù)的基礎(chǔ)上,進(jìn)入調(diào)整增長期,被稱為西歐經(jīng)濟(jì)的“黃金時代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經(jīng)濟(jì)一體化到政治一體化的發(fā)展趨勢;“貨幣王國的世界公民”主要以歐元的流通為例,進(jìn)一步表明歐洲走向聯(lián)合的趨勢。

2、西歐經(jīng)濟(jì)高速發(fā)展的共同原因:第一,西歐各國進(jìn)行社會改革和政策調(diào)整。進(jìn)行社會改革,例如:推行福利制度,適當(dāng)改善人民的生活條件,緩和社會矛盾,穩(wěn)定社會秩序;進(jìn)行政策調(diào)整,如:將一些私人壟斷企業(yè)國有化,并建立有關(guān)國計民生的重要工業(yè)部門。這些政策的推行,促進(jìn)了西歐經(jīng)濟(jì)的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計劃的實施,解決了西歐戰(zhàn)后經(jīng)濟(jì)發(fā)展的啟動資金,西歐重工業(yè)在短時期內(nèi)完成了新的裝備,并有能力購買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對產(chǎn)業(yè)部門進(jìn)行了改造,使勞動生產(chǎn)率大大提高,從而有力地推動了經(jīng)濟(jì)的高速發(fā)展。

3、伴隨著歐洲經(jīng)濟(jì)合作的成功,歐洲經(jīng)濟(jì)不斷的恢復(fù),要求在國際上發(fā)揮更重要的作用。因而要加強(qiáng)在政治領(lǐng)域的合作成為歐洲各國的一致要求。面對二戰(zhàn)結(jié)束后以美蘇為首的兩極爭霸的冷戰(zhàn)格局,歐洲各國迫切要求組成一個更加強(qiáng)大的團(tuán)體來維護(hù)自己的利益。于是在政治領(lǐng)域的合作很快便實施開來。

4、為進(jìn)一步加強(qiáng)歐洲共同體之間的經(jīng)濟(jì)合作與交流,減少共同體內(nèi)部成員國存在的貿(mào)易壁壘,用統(tǒng)一的貨幣在歐共體各國之間流通,實現(xiàn)經(jīng)濟(jì)的聯(lián)合,從而進(jìn)一步加強(qiáng)歐洲各國之間的政治合作。

課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。

教學(xué)目標(biāo):

(1)知識與能力:了解東盟的發(fā)展歷程,說說中國與東盟的交往情況;分析北美自由貿(mào)易區(qū)建立的原因和影響,比較北美自由貿(mào)易區(qū)與歐盟的異同;概述亞太經(jīng)濟(jì)合作組織建立的過程,探討亞太國家加強(qiáng)合作的途徑與方式。

(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴(kuò)大及其影響;用列表等方式比較北美自由貿(mào)易區(qū)與歐盟的異同,學(xué)習(xí)用比較的方法認(rèn)識歷史問題;通過上網(wǎng)等途徑搜集中國參加APEC會議的資料,多渠道去了解和認(rèn)識APEC建立的史實及影響。

(3)情感、態(tài)度與價值觀:通過對東盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織等區(qū)域經(jīng)濟(jì)一體化進(jìn)程的學(xué)習(xí)和了解,體會當(dāng)今世界國家間加強(qiáng)合作、競爭與發(fā)展的重要性,樹立合作與競爭的意識。

重點難點:

重點:通過了解歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。

教學(xué)建議:

1、在經(jīng)濟(jì)全球化的進(jìn)程中,亞太地區(qū)的經(jīng)濟(jì)集團(tuán)化也在不斷深入發(fā)展。世界三大區(qū)域性經(jīng)濟(jì)集團(tuán)有兩個分別在該地區(qū)。這一地區(qū)成為當(dāng)今世界上經(jīng)濟(jì)發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿(mào)易區(qū)”和“亞太經(jīng)全組織”三個經(jīng)濟(jì)區(qū)域集團(tuán)為例,介紹了當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。每個集團(tuán)內(nèi)部有著自身的規(guī)則的同時也不斷與其它區(qū)域集團(tuán)相聯(lián)系,從而使世界經(jīng)濟(jì)形成了密不可分的一個整體。

2、東南亞國家聯(lián)盟自1967成立以來,已經(jīng)歷時近三分之一世紀(jì)。東盟在維護(hù)和促進(jìn)各成員國相互間的政治和經(jīng)濟(jì)合作,實現(xiàn)地區(qū)和平穩(wěn)定,加快成員國經(jīng)濟(jì)增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強(qiáng)了東盟的國際地位。東盟在由四大洲國家組成的APEC中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺上成為使日本、中國和印度等大國瞠乎其后的主角。

3、日本經(jīng)濟(jì)的崛起,特別是歐洲經(jīng)濟(jì)一體化實施的外在壓力,美國、加拿大和墨西哥3國發(fā)展各自經(jīng)濟(jì)的內(nèi)在動力,是北美自由貿(mào)易區(qū)成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價值觀念、風(fēng)俗習(xí)慣等又頗相似;經(jīng)濟(jì)互補(bǔ)性強(qiáng);相互貿(mào)易基礎(chǔ)良好,美、加、墨3國具有實行經(jīng)濟(jì)一體化的必要性,又具有實行經(jīng)濟(jì)一體化的可能性。美國認(rèn)為要取得世界經(jīng)濟(jì)的主導(dǎo)地位,只有建立以自己為中心經(jīng)濟(jì)區(qū)域集團(tuán),才能在經(jīng)濟(jì)全球化大潮中立于不敗之地。

4、二十世紀(jì)七十年代后,亞太地區(qū),特別是東亞各國和地區(qū)的對外開放經(jīng)濟(jì)政策和經(jīng)濟(jì)迅速發(fā)展為亞太區(qū)域經(jīng)濟(jì)合作創(chuàng)造了條件。東亞地區(qū)經(jīng)濟(jì)的發(fā)展,國際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經(jīng)濟(jì)合作創(chuàng)造了條件。歐共體統(tǒng)一市場和美加自由貿(mào)易區(qū)的建立,刺激了亞太向區(qū)域經(jīng)濟(jì)合作的方向發(fā)展。亞太經(jīng)合組織的主要活動,為各成員提供區(qū)域經(jīng)濟(jì),科技,貿(mào)易和發(fā)展等方面多邊合作的機(jī)會,交流各成員在這些領(lǐng)域內(nèi)的經(jīng)驗,促進(jìn)本區(qū)域的共同發(fā)展.它從產(chǎn)生、發(fā)展及運作模式均區(qū)別于歐盟和NAFTA,有自身的特點,這些特點適應(yīng)了APEC各成員國經(jīng)濟(jì)發(fā)展的狀況和經(jīng)濟(jì)運行模式。

課標(biāo)要求:

(1)以“布雷頓森林體系”建立為例,認(rèn)識第二次世界大戰(zhàn)后以美國為主導(dǎo)的資本主義世界經(jīng)濟(jì)體系的形成。

(2)了解世界貿(mào)易組織(WTO)的由來和發(fā)展,認(rèn)識它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用。了解中國參加世界貿(mào)易組織(WTO)的史實,認(rèn)識其影響和作用。

(3)了解經(jīng)濟(jì)全球化的發(fā)展趨勢,探討經(jīng)濟(jì)全球化進(jìn)程中的問題。

教學(xué)目標(biāo):

(1)知識與能力:了解“布雷頓森林體系”建立的基本史實,分析其影響;簡述世界貿(mào)易組織(WTO)的由來和發(fā)展,認(rèn)識它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用;了解中國參加世界貿(mào)易組織(WTO)的史實,認(rèn)識其影響和作用;概述經(jīng)濟(jì)全球化的發(fā)展趨勢,探討經(jīng)濟(jì)全球化進(jìn)程中的問題。

(2)過程與方法:閱讀課文和查找中國加入世貿(mào)組織談判的歷程等,了解“從GATT到WTO”的過程,圍繞世界貿(mào)易組織建立的必要性并對中國加入WTO的利與弊等問題展開討論;開展課堂討論或辯論:經(jīng)濟(jì)全球化對本地區(qū)的影響是利大于弊還是弊大于利?如何解決經(jīng)濟(jì)全球化出現(xiàn)的問題?從多角度去分析歷史問題。

(3)情感、態(tài)度與價值觀:通過了解經(jīng)濟(jì)全球化與中國加入世界貿(mào)易組織帶來的機(jī)遇與挑戰(zhàn),樹立面向世界、積極參與國際合作與競爭、促進(jìn)世界和平與發(fā)展的信念和為我國社會主義現(xiàn)代化建設(shè)而奮斗的責(zé)任感;通過了解經(jīng)濟(jì)區(qū)域集團(tuán)化與世界經(jīng)濟(jì)全球化之間的相互關(guān)系,認(rèn)識現(xiàn)實生活中合作

高中數(shù)學(xué)必修一課件(篇12)

學(xué)習(xí)目標(biāo)

1. 結(jié)合已學(xué)過的數(shù)學(xué)實例,了解歸納推理的含義;2. 能利用歸納進(jìn)行簡單的推理,體會并認(rèn)識歸納推理在數(shù)學(xué)發(fā)現(xiàn)中的作用。

2. 結(jié)合已學(xué)過的數(shù)學(xué)實例,了解類比推理的含義;

3. 能利用類比進(jìn)行簡單的推理,體會并認(rèn)識合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用。

學(xué)習(xí)過程

一、課前準(zhǔn)備

問題3:因為三角形的內(nèi)角和是 ,四邊形的內(nèi)角和是 ,五邊形的內(nèi)角和是

……所以n邊形的內(nèi)角和是

新知1:從以上事例可一發(fā)現(xiàn):

叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。

新知2:類比推理就是根據(jù)兩類不同事物之間具有

推測其中一類事物具有與另一類事物 的性質(zhì)的推理。

簡言之,類比推理是由 的推理。

新知3歸納推理就是根據(jù)一些事物的 ,推出該類事物的

的推理。 歸納是 的過程

例子:哥德巴赫猜想:

觀察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,

16=13+3, 18=11+7, 20=13+7, ……,

50=13+37, ……, 100=3+97,

猜想:

歸納推理的一般步驟

1 通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì)。

2 從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想)。

※ 典型例題

例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項和Sn的歸納過程。

變式1 觀察下列等式:1+3=4= ,

1+3+5=9= ,

1+3+5+7=16= ,

1+3+5+7+9=25= ,

……

你能猜想到一個怎樣的結(jié)論?

變式2觀察下列等式:1=1

1+8=9,

1+8+27=36,

1+8+27+64=100,

……

你能猜想到一個怎樣的結(jié)論?

例2設(shè) 計算 的值,同時作出歸納推理,并用n=40驗證猜想是否正確。

變式:(1)已知數(shù)列 的第一項 ,且 ,試歸納出這個數(shù)列的通項公式

例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)。

圓的概念和性質(zhì) 球的類似概念和性質(zhì)

圓的周長

圓的面積

圓心與弦(非直徑)中點的連線垂直于弦

與圓心距離相等的弦長相等,

※ 動手試試

1. 觀察圓周上n個點之間所連的弦,發(fā)現(xiàn)兩個點可以連一條弦,3個點可以連3條弦,4個點可以連6條弦,5個點可以連10條弦,由此可以歸納出什么規(guī)律?

2 如果一條直線和兩條平行線中的一條相交,則必和另一條相交。

3 如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。

三、總結(jié)提升

※ 學(xué)習(xí)小結(jié)

1.歸納推理的定義。

2. 歸納推理的一般步驟:①通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì);②從已知的相同性質(zhì)中推出一個明確表述的一般性命題(猜想).

3. 合情推理僅是“合乎情理”的推理,它得到的結(jié)論不一定真,但合情推理常常幫我們猜測和發(fā)現(xiàn)新的規(guī)律,為我們提供證明的思路和方法

相關(guān)推薦

  • 高中數(shù)學(xué)必修二課件(精華4篇) 高中數(shù)學(xué)必修二課件 篇1一、圓及圓的相關(guān)量的定義1、平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。2、圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。3、頂點在圓心...
    2025-03-17 閱讀全文
  • 高中數(shù)學(xué)必修二課件精選十五篇 一般給學(xué)生們上課之前,老師就早早地準(zhǔn)備好了教案課件,因此就需要老師自己花點時間去寫。教案課件是老師的重要參考,從哪些角度去準(zhǔn)備寫自己的教案課件呢?下面由幼兒教師教育網(wǎng)的編輯給大家來分享“高中數(shù)學(xué)必修二課件”,請將本網(wǎng)頁加入您常用的鏈接列表中!...
    2024-06-23 閱讀全文
  • 高中數(shù)學(xué)必修一課件精品 居安思危,思則有備,有備無患。當(dāng)幼兒園教師的工作遇到難題時,我們經(jīng)常會用提前準(zhǔn)備好的資料進(jìn)行參考。資料是時代的記錄,它是產(chǎn)生于人類實踐活動。參考資料有助于我們的工作進(jìn)一步發(fā)展。那么,你知道有哪些常見幼師資料嗎?以下是小編為大家收集的“高中數(shù)學(xué)必修一課件精品”供你參考,希望能夠幫助到大家。學(xué)習(xí)目標(biāo):1...
    2024-03-09 閱讀全文
  • 高中數(shù)學(xué)必修一課件匯總 教案課件是老師上課中很重要的一個課件,就需要老師用心去設(shè)計好教案課件了。教案是完整課堂教學(xué)的基礎(chǔ),應(yīng)該從什么角度去寫教案課件呢?欄目小編精心挑選后認(rèn)為“高中數(shù)學(xué)必修一課件”是最精彩的一篇文章,提供有用建議是我的職責(zé)但終究決策權(quán)在您!...
    2023-09-01 閱讀全文
  • 高中數(shù)學(xué)必修一課件(集錦5篇) 教案課件是老師日常工作中不可或缺的組成部分,因此老師們需要認(rèn)真地制作和使用教案課件。好的教案應(yīng)該充分考慮到學(xué)生的身心健康,從而達(dá)到教學(xué)效果的最大化。如果您想要編寫出優(yōu)秀的教案課件,應(yīng)該如何下手呢?以下是關(guān)于“高中數(shù)學(xué)必修一課件”的相關(guān)內(nèi)容,希望對您有所幫助,記得收藏本頁面以方便查看。...
    2023-05-29 閱讀全文

高中數(shù)學(xué)必修二課件 篇1一、圓及圓的相關(guān)量的定義1、平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。2、圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。3、頂點在圓心...

2025-03-17 閱讀全文

一般給學(xué)生們上課之前,老師就早早地準(zhǔn)備好了教案課件,因此就需要老師自己花點時間去寫。教案課件是老師的重要參考,從哪些角度去準(zhǔn)備寫自己的教案課件呢?下面由幼兒教師教育網(wǎng)的編輯給大家來分享“高中數(shù)學(xué)必修二課件”,請將本網(wǎng)頁加入您常用的鏈接列表中!...

2024-06-23 閱讀全文

居安思危,思則有備,有備無患。當(dāng)幼兒園教師的工作遇到難題時,我們經(jīng)常會用提前準(zhǔn)備好的資料進(jìn)行參考。資料是時代的記錄,它是產(chǎn)生于人類實踐活動。參考資料有助于我們的工作進(jìn)一步發(fā)展。那么,你知道有哪些常見幼師資料嗎?以下是小編為大家收集的“高中數(shù)學(xué)必修一課件精品”供你參考,希望能夠幫助到大家。學(xué)習(xí)目標(biāo):1...

2024-03-09 閱讀全文

教案課件是老師上課中很重要的一個課件,就需要老師用心去設(shè)計好教案課件了。教案是完整課堂教學(xué)的基礎(chǔ),應(yīng)該從什么角度去寫教案課件呢?欄目小編精心挑選后認(rèn)為“高中數(shù)學(xué)必修一課件”是最精彩的一篇文章,提供有用建議是我的職責(zé)但終究決策權(quán)在您!...

2023-09-01 閱讀全文

教案課件是老師日常工作中不可或缺的組成部分,因此老師們需要認(rèn)真地制作和使用教案課件。好的教案應(yīng)該充分考慮到學(xué)生的身心健康,從而達(dá)到教學(xué)效果的最大化。如果您想要編寫出優(yōu)秀的教案課件,應(yīng)該如何下手呢?以下是關(guān)于“高中數(shù)學(xué)必修一課件”的相關(guān)內(nèi)容,希望對您有所幫助,記得收藏本頁面以方便查看。...

2023-05-29 閱讀全文