高一數(shù)學教案
發(fā)布時間:2023-04-13 高一數(shù)學教案高一數(shù)學教案匯總。
每個老師不可缺少的課件是教案課件,老師還沒有寫的話現(xiàn)在也來的及。?學生反應的準確性可以體現(xiàn)教學的專業(yè)度,你是否在尋找合適的教案課件呢?《高一數(shù)學教案》是由欄目小編特意為您提供的內容,更多信息請繼續(xù)關注我們的網(wǎng)站!
高一數(shù)學教案(篇1)
教學準備
教學目標
熟悉與數(shù)列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
教學重難點
熟悉與數(shù)列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
教學過程
【復習要求】熟悉與數(shù)列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
【方法規(guī)律】應用數(shù)列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數(shù)學模型是等差數(shù)列,還是等比數(shù)列,并確定其首項,公差或公比等基本元素,然后設計合理的計算方案,即數(shù)學建模是解答數(shù)列應用題的關鍵。
一、基礎訓練
1、某種細菌在培養(yǎng)過程中,每20分鐘*一次一個*為兩個,經(jīng)過3小時,這種細菌由1個可繁殖成
A、511B、512C、1023D、1024
2、若一工廠的生產總值的月平均增長率為p,則年平均增長率為
A、B、
C、D、
二、典型例題
例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問到第n期期末的本金和是多少?
評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數(shù)列求和的方法。用實際問題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]
例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的`金額是多少元?
例3、某地區(qū)位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區(qū)的綠化率已達到30%,從20xx年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?。問?jīng)過多少年的努力才能使全縣的綠洲面積超過60%。lg2=0.3
例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。
高一數(shù)學教案(篇2)
(2)能根據(jù)幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法:
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀:
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?
3、展示具有柱、錐、臺、球結構特征的空間物體。
1、棱柱的結構特征:
(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
(2)棱柱的主要結構特征(棱柱的概念):
①有兩個面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。
(3)棱柱的表示法及分類:
2、棱錐、棱臺的結構特征:
(1)實物模型演示,投影圖片;
(2)以類似的方法,根據(jù)出棱錐、棱臺的結構特征,并得出相關的概念、分類以及表示。
棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。
棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結構特征:
(1)實物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關概念及圓柱的表示。
4、圓錐、圓臺、球的結構特征:
——如何得到圓錐、圓臺、球?
(2)以類似的方法,根據(jù)圓錐、圓臺、球的結構特征,以及相關概念和表示。
5、柱體、錐體、臺體的概念及關系:
探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點和不同點?三者的關系如何?當?shù)酌姘l(fā)生變化時,它們能否互相轉化?
圓柱、圓錐、圓臺呢?
6、簡單組合體的結構特征:
(2)實物模型演示,投影圖片——說出組成這些物體的幾何結構特征。
(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
練習:課本P7 ??練習1、2; ?課本P8 ?習題1.1 ?第1、2、3、4、5題
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
1、中心投影與平行投影:
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
課本P15 ??練習1、2; ?P20習題1.2 [A組] 2。
課本P20習題1.2 ?[A組] 1。
高一數(shù)學教案(篇3)
教學目標:
1、理解集合的概念和性質。
2、了解元素與集合的表示方法。
3、熟記有關數(shù)集。
4、培養(yǎng)學生認識事物的能力。
教學重點:
集合概念、性質
教學難點:
集合概念的理解
教學過程:
1、定義:
集合:一般地,某些指定的對象集在一起就成為一個集合(集)。元素:集合中每個對象叫做這個集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素為1、3、5、7,
例(2)的元素為到兩定點距離等于兩定點間距離的點,
例(3)的元素為滿足不等式3x—2> x+3的實數(shù)x,
例(4)的元素為所有直角三角形,
例(5)為高一·六班全體男同學。
一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??
為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(1)確定性;(2)互異性;(3)無序性。
3、元素與集合的'關系:隸屬關系
元素與集合的關系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A。
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)
注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??
元素通常用小寫的拉丁字母表示,如a、b、c、p、q??
2、“∈”的開口方向,不能把a∈A顛倒過來寫。
4
注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0。
(2)非負整數(shù)集內排除0的集。記作N__或N+ 。Q、Z、R等其它數(shù)集內排除0
的集,也是這樣表示,例如,整數(shù)集內排除0的集,表示成Z__
請回答:已知a+b+c=m,A={x|ax2+bx+c=m},判斷1與A的關系。
高一數(shù)學學習方法歸納
【一、及時回憶】
如果等到把課堂內容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習。
可以一個人單獨回憶,也可以幾個人在一起互相啟發(fā),補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節(jié),循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
【二、重復鞏固】
即使是復習過的內容仍須定期鞏固,但是復習的次數(shù)應隨時間的增長而逐步減小,間隔也可以逐漸拉長??梢援斕祆柟绦轮R,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統(tǒng)的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節(jié)進行知識歸納總結,必須把相關知識串聯(lián)在一起,形成知識網(wǎng)絡,達到對知識和方法的整體把握。
【三、合理安排】
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優(yōu)于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數(shù)與間隔時間,并非間隔時間越長越好,而要適合自己的復習規(guī)律。
【四、突破重點難點】
對所學的素材要進行分析、歸類,找出重、難點,分清主次。在復習過程中,特別要關注難點及容易造成誤解的問題,應分析其關鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點“超市”,可隨時點擊,進行復習。
【五、效果檢測】
隨著時間的推移,復習的效果會產生變化,有的淡化、有的模糊、有的不準確,到底各環(huán)節(jié)的內容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關練習、期中考試、期末考試等,都是為了檢測學習效果。檢測時必須獨立,完成,保證檢測出的效果的真實性,如果存在問題,應該找到錯誤的根源,并適時采取補救措施進行校正。目前市場上練習冊多如牛毛,請在老師的指導下選用。
高中數(shù)學考試的技巧
總體原則
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關的知識點都寫出來,要知道數(shù)學講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學好)。
一、整體把握、抓大放小
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的題目,一定要拿到應得的分數(shù)。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
高一數(shù)學教案(篇4)
教學目標
1.理解分數(shù)指數(shù)冪的含義,了解實數(shù)指數(shù)冪的意義。
2.掌握有理數(shù)指數(shù)冪的運算性質,靈活的運用乘法公式進行有理數(shù)指數(shù)冪的運算和化簡,會進行根式與分數(shù)指數(shù)冪的相互轉化。
教學重點
1.分數(shù)指數(shù)冪含義的理解。
2.有理數(shù)指數(shù)冪的運算性質的理解。
3.有理數(shù)指數(shù)冪的運算和化簡。
教學難點
1.分數(shù)指數(shù)冪含義的理解。
2.有理數(shù)指數(shù)冪的運算和化簡。
教學過程
一.問題情景
上節(jié)課研究了根式的意義及根式的性質,那么根式與指數(shù)冪有什么關系?整數(shù)指數(shù)冪有那些運算性質?
二.學生活動
1.說出下列各式的意義,并指出其結果的指數(shù),被開方數(shù)的指數(shù)及根指數(shù)三者之間的關系
(1)=(2)=
2.從上述問題中,你能得到的結論為
3.(a0)及(a0)能否化成指數(shù)冪的形式?
三.數(shù)學理論
正分數(shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))
負分數(shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))
1.規(guī)定:0的正分數(shù)指數(shù)冪仍是0,即=0
0的負分數(shù)指數(shù)冪無意義。
3.規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),因而整數(shù)指數(shù)冪的運算性質同樣適用于有理數(shù)指數(shù)冪。
即=(1)
=(2)其中s,tQ,a0,b0
=(3)
四.數(shù)學運用
例1求值:
(1)(2)(3)(4)
例2用分數(shù)指數(shù)冪的形式表示下列各式(a0)
(1)(2)
例3化簡
(1)
(2)(3)
例4化簡
例5已知求(1)(2)
五.回顧小結
1.分數(shù)指數(shù)冪的意義。=(0,m,n)
無意義
2.有理數(shù)指數(shù)冪的運算性質
3.整式運算律及乘法公式在分數(shù)指數(shù)冪運算中仍適用
4.指數(shù)概念從整數(shù)指數(shù)冪推廣到有理數(shù)指數(shù)冪,同樣可以推廣到實數(shù)指數(shù)冪,請同學們閱讀P47的閱讀部分
練習P47-48練習1,2,3,4
六.課外作業(yè)
P48習題2.2(1)2,4
高一數(shù)學教案(篇5)
教學 目標
1、使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項、
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的、
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第 項 與項數(shù) 的關系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式、
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項、
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力、
3、通過由 求 的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣、
教學 建議
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等、
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關系、在 教學 中強調數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列、函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法、由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關系,從而數(shù)列就有其特殊的表示法??遞推公式法、
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法, 教師 應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助、
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用 來調整等、如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關系、
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前 項和的概念,用 表示 的問題是重點問題,可先提出一個具體問題讓學生分析 與 的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調 的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況、
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的、
教學 設計示例
數(shù)列的概念
教學 目標
1、通過 教學 使學生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項公式寫出數(shù)列的項、
2、通過數(shù)列定義的歸納概括,初步培養(yǎng)學生的觀察、抽象概括能力;滲透函數(shù)思想、
3、通過有關數(shù)列實際應用的介紹,激發(fā)學生學習研究數(shù)列的積極性、
教學 重點,難點
教學 重點是數(shù)列的定義的歸納與認識; 教學 難點是數(shù)列與函數(shù)的聯(lián)系與區(qū)別、
教學 用具: 電腦,課件(媒體資料),投影儀,幻燈片
教學 方法: 講授法為主
教學 過程
一、揭示課題
今天開始我們研究一個新課題、
先舉一個生活中的例子:場地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律、實際上我們要研究的是這樣的一列數(shù)
( 板書 ) 象這樣排好隊的數(shù)就是我們的研究對象??數(shù)列、
( 板書 )第三章 數(shù)列
(一)數(shù)列的概念
二、講解新課
要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學概括出數(shù)列的定義,再給出幾列數(shù):
(幻燈片)
①
自然數(shù)排成一列數(shù):
②
3個1排成一列:
③
無數(shù)個1排成一列:
④
的不足近似值,分別近似到 排列起來:
⑤
正整數(shù) 的倒數(shù)排成一列數(shù):
⑥
函數(shù) 當 依次取 時得到一列數(shù):
⑦
函數(shù) 當 依次取 時得到一列數(shù):
⑧
請學生觀察8列數(shù),說明每列數(shù)就是一個數(shù)列,數(shù)列中的每個數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù)、
( 板書 )1、數(shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列、
為表述方便給出幾個名稱:項,項數(shù),首項(以幻燈片的形式給出)、以上述八個數(shù)列為例,讓學生練習了指出某一個數(shù)列的首項是多少,第二項是多少,指出某一個數(shù)列的一些項的項數(shù)、
由此可以看出,給定一個數(shù)列,應能夠指明第一項是多少,第二項是多少,……,每一項都是確定的,即指明項數(shù),對應的項就確定、所以數(shù)列中的每一項與其項數(shù)有著對應關系,這與我們學過的函數(shù)有密切關系、
( 板書 )2、數(shù)列與函數(shù)的`關系
數(shù)列可以看作特殊的函數(shù),項數(shù)是其自變量,項是項數(shù)所對應的函數(shù)值,數(shù)列的定義域是正整數(shù)集 ,或是正整數(shù)集 的有限子集 、
于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點看待數(shù)列、
遇到數(shù)學概念不單要下定義,還要給其數(shù)學表示,以便研究與交流,下面探討數(shù)列的表示法、
( 板書 )3、數(shù)列的表示法
數(shù)列可看作特殊的函數(shù),其表示也應與函數(shù)的表示法有聯(lián)系,首先請學生回憶函數(shù)的表示法:列表法,圖象法,解析式法、相對于列表法表示一個函數(shù),數(shù)列有這樣的表示法:用 表示第一項,用 表示第一項,……,用 表示第 項,依次寫出成為
( 板書 )(1)列舉法
(如幻燈片上的例子)簡記為
一個函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個數(shù)列,把它稱作圖示法、
( 板書 )(2)圖示法
啟發(fā)學生仿照函數(shù)圖象的畫法畫數(shù)列的圖形、具體方法是以項數(shù) 為橫坐標,相應的項 為縱坐標,即以 為坐標在平面直角坐標系中做出點(以前面提到的數(shù)列 為例,做出一個數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點,因為橫坐標為正整數(shù),所以這些點都在 軸的右側,而點的個數(shù)取決于數(shù)列的項數(shù)、從圖象中可以直觀地看到數(shù)列的項隨項數(shù)由小到大變化而變化的趨勢、
有些函數(shù)可以用解析式來表示,解析式反映了一個函數(shù)的函數(shù)值與自變量之間的數(shù)量關系,類似地有一些數(shù)列的項能用其項數(shù)的函數(shù)式表示出來,即 ,這個函數(shù)式叫做數(shù)列的通項公式、
( 板書 )(3)通項公式法
如數(shù)列 的通項公式為 ;
的通項公式為 ;
的通項公式為 ;
數(shù)列的通項公式具有雙重身份,它表示了數(shù)列的第 項,又是這個數(shù)列中所有各項的一般表示、通項公式反映了一個數(shù)列項與項數(shù)的函數(shù)關系,給了數(shù)列的通項公式,這個數(shù)列便確定了,代入項數(shù)就可求出數(shù)列的每一項、
例如,數(shù)列 的通項公式 ,則 、
值得注意的是,正如一個函數(shù)未必能用解析式表示一樣,不是所有的數(shù)列都有通項公式,即便有通項公式,通項公式也未必唯一、
除了以上三種表示法,某些數(shù)列相鄰的兩項(或幾項)有關系,這個關系用一個公式來表示,叫做遞推公式、
( 板書 )(4)遞推公式法
如前面所舉的鋼管的例子,第 層鋼管數(shù) 與第 層鋼管數(shù) 的關系是 ,再給定 ,便可依次求出各項、再如數(shù)列 中, ,這個數(shù)列就是 、
像這樣,如果已知數(shù)列的第1項(或前幾項),且任一項與它的前一項(或前幾項)間的關系用一個公式來表示,這個公式叫做這個數(shù)列的遞推公式、遞推公式是數(shù)列所特有的表示法,它包含兩個部分,一是遞推關系,一是初始條件,二者缺一不可、
可由學生舉例,以檢驗學生是否理解、
三、小結
1、數(shù)列的概念
2、數(shù)列的四種表示
四、作業(yè)? 略
五、 板書 設計
數(shù)列
(一)數(shù)列的概念 涉及的數(shù)列及表示
1、數(shù)列的定義
2、數(shù)列與函數(shù)的關系
3、數(shù)列的表示法
(1)列舉法
(2)圖示法
(3)通項公式法
(4)遞推公式法
探究活動
將邊長為 厘米的正方形分成 個邊長為1厘米的正方形,數(shù)出其中所有正方形的個數(shù)、
解:當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;歸納猜想邊長為 厘米的正方形中的正方形共有 個、
高一數(shù)學教案(篇6)
案例背景:
對數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的.故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎.
(師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實質是研究兩個函數(shù)的關系,所以自然我們應從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).
所求反函數(shù)為.
(師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
(師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質嗎?最初步的認識是什么?
(教師提示學生從反函數(shù)的三定與三反去認識,學生自主探究,合作交流)
(學生)對數(shù)函數(shù)的定義域為,對數(shù)函數(shù)的值域為,且底數(shù)就是指數(shù)函數(shù)中的,故有著相同的限制條件.
(提問)用什么方法來畫函數(shù)圖像?
(學生1)利用互為反函數(shù)的兩個函數(shù)圖像之間的關系,利用圖像變換法畫圖.
(學生2)用列表描點法也是可以的。
請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.
(師)由于指數(shù)函數(shù)的圖像按和分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應以1為分界線分成兩種情況和,并分別以和為例畫圖.
具體操作時,要求學生做到:
(1)指數(shù)函數(shù)和的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).
(2)畫出直線.
(3)的圖像在翻折時先將特殊點對稱點找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而的圖像在翻折時可提示學生分兩段翻折,在左側的先翻,然后再翻在右側的部分.
學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出
和的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內)如圖:
教師畫完圖后再利用電腦將和的圖像畫在同一坐標系內,如圖:
然后提出讓學生根據(jù)圖像說出對數(shù)函數(shù)的性質(要求從幾何與代數(shù)兩個角度說明)
由以上兩條可說明圖像位于軸的右側.
(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關于原點對稱,也不關于軸對稱.
當時,在上是減函數(shù),即圖像是下降的.
之后可以追問學生有沒有值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學生看著圖可以答出應有兩種情況:
當時,有;當時,有.
學生回答后教師可指導學生巧記這個結論的方法:當?shù)讛?shù)與真數(shù)在1的同側時函數(shù)值為正,當?shù)讛?shù)與真數(shù)在1的兩側時,函數(shù)值為負,并把它當作第(6)條性質板書記下來.
最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數(shù)函數(shù)的性質對比記憶.(特別強調它們單調性的一致性)
對圖像和性質有了一定的了解后,一起來看看它們的應用.
先由學生依次列出相應的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.
(1)與;(2)與;
(3)與;(4)與.
讓學生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構造對數(shù)函數(shù)利用單調性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.
案例反思:
本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質.難點是利用指數(shù)函數(shù)的圖象和性質得到對數(shù)函數(shù)的圖象和性質.由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數(shù)這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
Yjs21.Com更多幼兒園教案擴展閱讀
高一新教材數(shù)學必修一教案(匯總六篇)
高一新教材數(shù)學必修一教案 篇1
學習引導
一、自主學習
1. 閱讀課本 練習止.
2. 回答問題
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關系?
3. 完成 練習
4. 小結.
二、方法指導
1. 在學習對數(shù)函數(shù)時,同學們應從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
2. 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開.同學們在學習時應該把兩個函數(shù)進行類比,通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質
思考引導
一、提問題
1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
總結引導
1.對數(shù)函數(shù)的有關概念
(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
3. 與對數(shù)函數(shù)有關的定義域的求法:
4. 舉例說明如何求反函數(shù).
拓展引導
一、課外作業(yè): 習題3-5 A組 1,2,3, B組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負值的 的取值范圍.
高一新教材數(shù)學必修一教案 篇2
(一)教學目標
1、知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集、
(2)能使用Venn圖表示集合的并集和交集運算結果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關的術語和符號,并會用它們正確進行集合的`并集與交集運算。
2、過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質與內涵,增強學生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力、
3、情感、態(tài)度與價值觀
通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學生運用數(shù)學知識和數(shù)學思想認識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學的應用價值、
(二)教學重點與難點
重點:交集、并集運算的含義,識記與運用、
難點:弄清交集、并集的含義,認識符號之間的區(qū)別與聯(lián)系
(三)教學方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結合、
(四)教學過程
教學環(huán)節(jié),教學內容,師生互動,設計意圖
提出問題引入新知,思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進行類似“加法”運算、
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數(shù)},
B = {x | x是無理數(shù)},
C = {x | x是實數(shù)}、
師:兩數(shù)存在大小關系,兩集合存在包含、相等關系;實數(shù)能進行加減運算,探究集合是否有相應運算、
生:集合A與B的元素合并構成C、
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算、生疑析疑,
高一新教材數(shù)學必修一教案 篇3
教學目標:
(1) 了解集合、元素的概念,體會集合中元素的三個特征;
(2) 理解元素與集合的"屬于"和"不屬于"關系;
(3) 掌握常用數(shù)集及其記法;
教學重點:
掌握集合的基本概念;
教學難點:
元素與集合的關系;
教學過程:
一、引入課題
軍訓前學校通知:8月15日8點,高一年級在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念--集合(宣布課題),即是一些研究對象的總體。
閱讀課本P2-P3內容
二、新課教學
(一)集合的有關概念
1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。
2. 一般地,我們把研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。
3. 思考1:判斷以下元素的全體是否組成集合,并說明理由:
(1) 大于3小于11的偶數(shù);
(2) 我國的小河流;
(3) 非負奇數(shù);
(4) 方程的解;
(5) 某校20xx級新生;
(6) 血壓很高的人;
(7) 著名的數(shù)學家;
(8) 平面直角坐標系內所有第三象限的點
(9) 全班成績好的學生。
對學生的解答予以討論、點評,進而講解下面的問題。
4. 關于集合的元素的特征
(1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現(xiàn)同一元素。
(3)無序性:給定一個集合與集合里面元素的順序無關。
(4)集合相等:構成兩個集合的元素完全一樣。
5. 元素與集合的關系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作:a∈A
(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作:aA
例如,我們A表示"1~20以內的所有質數(shù)"組成的集合,則有3∈A
4A,等等。
6.集合與元素的字母表示: 集合通常用大寫的拉丁字母A,B,C...表示,集合的元素用小寫的拉丁字母a,b,c,...表示。
7.常用的數(shù)集及記法:
非負整數(shù)集(或自然數(shù)集),記作N;
正整數(shù)集,記作N或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實數(shù)集,記作R;
(二)例題講解:
例1.用"∈"或""符號填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)設A為所有亞洲國家組成的集合,則中國 A,美國 A,印度 A,英國 A。
例2.已知集合P的元素為, 若3∈P且-1P,求實數(shù)m的值。
(三)課堂練習:
課本P5練習1;
歸納小結:
本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了常用集合及其記法。
作業(yè)布置:
1.習題1.1,第1- 2題;
2.預習集合的表示方法。
高一新教材數(shù)學必修一教案 篇4
教學目的:
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
課 型:
新授課
教學重點:
集合的交集與并集的概念;
教學難點:
集合的交集與并集 “是什么”,“為什么”,“怎樣做”;
教學過程:
一、 引入課題
我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
二、 新課教學
1、 并集
一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B 讀作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn圖表示:
說明:兩個集合求并集,結果還是一個集合,是由集合A與B的所有元素組成的集合(重復元素只看成一個元素)。
例題1求集合A與B的并集
① A={6,8,10,12} B={3,6,9,12}
② A={x|-1≤x≤2} B={x|0≤x≤3}
(過度)問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應是我們所關心的,我們稱其為集合A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B 讀作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個集合求交集,結果還是一個集合,是由集合A與B的公共元素組成的集合。
例題2求集合A與B的交集
③ A={6,8,10,12} B={3,6,9,12}
④ A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)
說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集
3、例題講解
例3(P12例1):理解所給集合的含義,可借助venn圖分析
例4 P12例2):先“化簡”所給集合,搞清楚各自所含元素后,再進行運算。
4、 集合基本運算的一些結論:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,則A B,反之也成立
若A∪B=B,則A B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
高一新教材數(shù)學必修一教案 篇5
重點難點教學:
1.正確理解映射的概念;
2.函數(shù)相等的兩個條件;
3.求函數(shù)的定義域和值域。
一.教學過程:
1. 使學生熟練掌握函數(shù)的概念和映射的定義;
2. 使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3. 使學生掌握函數(shù)的三種表示方法。
二.教學內容:
1.函數(shù)的定義
設A、B是兩個非空的數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(shù)(function),記作:
(),yf_A
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數(shù)值,函數(shù)值的集合{()|}f_A?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.
2.構成函數(shù)的三要素 定義域、對應關系和值域。
3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區(qū)間及寫法:
設a、b是兩個實數(shù),且a
(1) 滿足不等式axb??的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
(2) 滿足不等式axb??的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5.函數(shù)的三種表示方法 ①解析法 ②列表法 ③圖像法
高一新教材數(shù)學必修一教案 篇6
本節(jié)課是《普通高中課程標準實驗教科書·數(shù)學5》(北師大版)第一章數(shù)列第二節(jié)等差數(shù)列第一課時.數(shù)列是高中數(shù)學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用.等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣.同時等差數(shù)列也為今后學習等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法.
【教學目標】
1. 知識與技能
(1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務等差數(shù)列的通項公式及其推導過程:
(3)會應用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結的良好習慣。
【教學重點】
①等差數(shù)列的概念;②等差數(shù)列的通項公式
【教學難點】
①理解等差數(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導過程.
【學情分析】
我所教學的學生是我校高一(7)班的學生(平行班學生),經(jīng)過一年的高中數(shù)學學習,大部分學生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展.
【設計思路】
1.教法
①啟發(fā)引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調動學生的積極性.
③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.
2.學法
引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.
【教學過程】
一:創(chuàng)設情境,引入新課
1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2.水庫管理人員為了保證優(yōu)質魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18,自然放水每天水位降低2.5,最低降至5.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:)組成一個什么數(shù)列?
3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(設置意圖:從實例引入,實質是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型.通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力.
二:觀察歸納,形成定義
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉換成數(shù)學符號語言嗎?
教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義.
(設計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓?。骸皬牡诙椘?,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的`準確表達.)
三:舉一反三,鞏固定義
1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0 .
(設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用).
2思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設計意圖:強化等差數(shù)列的證明定義法)
四:利用定義,導出通項
1.已知等差數(shù)列:8,5,2,…,求第200項?
2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法.
(設計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質,激發(fā)學生的創(chuàng)造意識.鼓勵學生自主解答,培養(yǎng)學生運算能力)
五:應用通項,解決問題
1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?
2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差數(shù)列 3,7,11,…的第4項和第10項
教師:給出問題,讓學生自己操練,教師巡視學生答題情況.
學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)
六:反饋練習:教材13頁練習1
七:歸納總結:
1.一個定義:
等差數(shù)列的定義及定義表達式
2.一個公式:
等差數(shù)列的通項公式
3.二個應用:
定義和通項公式的應用
教師:讓學生思考整理,找?guī)讉€代表發(fā)言,最后教師給出補充
(設計意圖:引導學生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設計反思】
本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節(jié)課教學采用啟發(fā)方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.
高一數(shù)學函數(shù)教案
俗話說,做什么事都要有計劃和準備。作為幼兒園的老師,我們都希望小朋友們能在課堂上學到知識,為了給孩子提供更高效的學習效率,教案是個不錯的選擇,教案可以讓上課自己輕松的同時,學生也更好的消化課堂內容。所以你在寫幼兒園教案時要注意些什么呢?經(jīng)過收集,小編整理了高一數(shù)學函數(shù)教案,希望你更多關注本網(wǎng)站更新。
高一數(shù)學函數(shù)教案 篇1
教學目標
1.準確把握祥林嫂的形象特征,理解造成人物悲劇的社會根源,從而認識舊社會封建禮教的罪惡本質。
2.學習本文綜合運用肖像描寫、動作描寫、語言描寫等塑造人物的方法。
3.體會并理解本文環(huán)境描寫的作用,理解本文倒敘手法的作用。
教學課時:四課時
教學步驟:
第一課時
本課時重點理清小說的情節(jié)結構,了解倒敘的作用。
一、導入新課:
我們在初中曾經(jīng)學過魯迅的小說《故鄉(xiāng)》、《孔乙己》,其中由活潑可愛而變成麻木愚昧的閏土,站著喝酒而穿長衫的孔乙己,都給我們留下了深刻的印象。今天,我們學習的是魯迅先生又一篇著名的小說《祝?!?。
二、介紹背景:
《祝福》寫于1924年2月7日,是魯迅短篇小說集《彷徨》的第一篇,最初發(fā)表于1924年3月25日出版的上?!稏|方雜志》半月刊第二十一卷第6號上,后收入《魯迅全集》第二卷。
魯迅以極大的熱情歡呼辛亥革命的爆發(fā),可是不久就失望了。他看到辛亥革命以后,帝制政權雖被推翻,但代之而起的卻是地主階級的軍閥官僚的統(tǒng)治,封建社會的基礎并沒有徹底摧毀,中國的廣大人民,尤其是農民,日益貧困化,他們過著饑寒交迫的生活,宗法觀念、封建禮教仍然是壓在人民頭上的精神枷鎖。魯迅在《祝?!防?,深刻地展示了這一時期中國農村的真實面貌。
這一時期的魯迅基本上還是一個革命民主主義者,還不可能用馬克思主義來分析觀察,有時就不免發(fā)生懷疑,感到失望。他把這一時期的小說集叫做《彷徨》,顯然反映了其時自己憂憤的心情。但魯迅畢竟是一個真的猛士,敢于直面慘淡的人生,敢于正視淋漓的鮮血,他決不會畏縮、退避,而是積極奮斗。
《祝?!愤@篇小說通過祥林嫂一生的悲慘遭遇,反映了辛亥革命以后中國的社會矛盾,深刻地揭露了地主階級對勞動婦女的摧殘與迫害,揭示了封建禮教吃人的本質,指出徹底反封建的必要性。
三、研習課文:
1、自讀預習提示,了解小說的教學重點,明確教學目標。
2、理清情節(jié),了解倒敘的作用。
3、速讀課文,概括各段內容。
提問:這篇小說是按時間順序敘述,還是另有安排?
明確:本文在序幕以后就寫出了故事的結局,這是采取了倒敘的手法。
提問:在結構上采取倒敘手法有什么作用?
討論歸納:
設置懸念,使讀者急于追根溯源探求原委;寫祥林嫂在富人們一片祝福中死去,造成了濃重的悲劇氣氛,而且死后引起了魯四老爺?shù)恼鹋?,揭示了祥林嫂與魯四老爺之間的尖銳的矛盾,突出了小說反封建的主題。
第二課時
本課時重點分析祥林嫂形象。
一、回顧小說的三要素:
情節(jié)、人物、環(huán)境(社會環(huán)境、自然環(huán)境)
二、分析祥林嫂形象:
小說的主題是靠人物形象來體現(xiàn)的。這一課的主人公就是祥林嫂。我們只有弄清楚祥林嫂的性格和命運,才能懂得《祝福》的主題。而作為人物形象又是通過故事情節(jié)──人和人之間的聯(lián)系或沖突表現(xiàn)出來的。那么,祥林嫂究竟是一個什么樣的人呢?我們就先來分析一下故事情節(jié)的開端、發(fā)展、高潮、結局,由此來把握祥林嫂的形象,領會《祝福》的主題。
1.開端:
①祥林嫂為什么要到魯家做工?
小說的一開始,祥林嫂就是封建的宗法制度的犧牲品。因為正是父母之命,媒妁之言,迫使她嫁給一個比她小十歲的丈夫,而丈夫又過早地喪了命。祥林嫂因此陷入了嫁而守寡的悲慘的命運之中。按理說,年紀大約二十六七的祥林嫂是完全可以用自己的勞動在農村生活下去的,可是她家里還有嚴厲的婆婆,于是祥林嫂才被迫逃到魯四老爺家里。
②祥林嫂是怎樣對待使她嫁而守寡、備受虐待的宗法制度的呢?
高一數(shù)學函數(shù)教案 篇2
教學目的:
1.訓練按一定目的從課文中篩選信息的能力。
2.理解辯證立論,重點突出,廣征博引,逐層深人的寫法。
3.認識治學中占有材料與鉆研理論的關系;樹立實踐第一的辯證唯物主義觀點。
教學設想:
1.解讀,關鍵要抓住“虛”與“實”的關系,理清課文的脈絡,重點認識圍繞基本觀點立論辯證,廣征博引、層層深人的論述特點,理清文章觀點與材料之間的關系,把握課文的重點。
2.安排二課時。
教學過程及步驟:
一、開場白:
1980年10月22日,中國語言學會成立。呂叔湘先了題為《把我國語言科學推向前進》的講話。全文分“中和外的關系”、“虛和實的關系”、“動和靜的關系”、“通和專的關系”四個部分,分別論述了語言研究工作中需要處理好的四對關系。是其中的第二部分。題目是選作教材時編者加的。文章雖然“主要談漢語研究”,但正如作者所言“在不同程度上也適用于其他方面”,對于一般治學和研究問題,對于中職學生的學習,包括.寫作時處理好選材與立意的關系,都具有重要的指導意義。
二、作者簡介:
呂叔湘(1904—1998),江蘇丹陽人。當代著名語言學家、語文教育家,先后擔任中國社會科學院語言研究所研究員、所長,兼任《中國語文》雜志主編,全國文字改革研究會主席,中國語言學會會長,語文出版社社長,并擔任全國政協(xié)第二、三屆委員,全國人大第三、四、五、六屆代表,五屆常委,法制委員會委員。他于1926年畢業(yè)于國立東南大學,曾任過中學教員。1936年留學英國,1938年回國。先后任云南大學文史系副教授、華西協(xié)和大學中國文化研究所研究員、金陵大學文化研究所研究員兼中央大學中文系教授、開明書店編輯。建國后任清華大學中文系教授,1952年到中國社會科學院語言研究所工作。他幾十年來一直從事語文教學和研究,重點研究漢語語法,對我國語言學的發(fā)展作出了重要貢獻。主要著作有《中國文法要略》、《語法修辭講話》、《現(xiàn)代漢語八百詞》等。他治學嚴謹,著述材料豐富,引證充分,闡述詳盡,見解精辟。他還寫有許多普及性語文讀物,通俗實用,生動有趣。
三、分析課文:
全文共11段,可分為三個部分。
第一部分(第1~2段):系全文的總綱,提出論題并表明了觀點:理論從事例中來,事例從觀察中來、從實驗中來。文章首句提出論題,緊接著以兩個設問表明了觀點。在接下來的闡述中,作者以語言學研究為例說明了理論來自于事例,事例來自于觀察和實驗的道理。文章的第2段運用古人做學問、國外各種學派林立和“禪宗和尚”的例子闡述對前人的理論也要靠觀察來驗證的道理。在論述中,作者既承認“前人的理論是我們的財富”,又指出“前人的理論無論多么重要”,都“要用自己的觀察來驗證”;既肯定了講“家法”的好處,又指出其缺點,全面辯證,客觀公允,令人信服。這一段是對第1段的進一步強調和補充。
第二部分(第3~6段):具體闡述理論和事實的辯證關系并指出了具體的處理方法。第3段從事實對理論的作用角度舉出“反切”、“等韻”和“文字學”等理論的形成作為例證,指出事實能夠決定理論。第4段從比較理論和事實輕重的角度,運用達爾文物種起源理論的形成和明朝兩位理學家的故事作為論據(jù),指出沒有事實作基礎,理論就靠不住,更加突出了事實對理論的決定性作用。第5段是從理論對事實的作用角度,肯定了理論能引導人去發(fā)現(xiàn)事實的作用。運用了門捷列夫元素周期表填寫等例子。第6段具體提出處理二者關系的方法,特別強調“不可走極端”。這一部分的論述強調了事實對理論的決定性作用,其目的在于糾正現(xiàn)實中存在的重理論輕事實的認識??少F的是作者“矯枉”而不“過正”,沒有偏執(zhí)一端,沒有抹殺理論在治學中的作用,而是在輕重有別、詳略有致、突出重點的同時,兼顧到了事物的各個方面,從而顯得全面周到,辯證科學。作者對問題認識的深刻性和完整性由此可見一斑。
第三部分(第7~11段):著重論述觀察和實驗方面的有關問題。文章聯(lián)系實際,在分析重理論輕事例的原因、指出其危害的同時,闡述了觀察和實驗必須具備的精神和態(tài)度,強調要親自去觀察、實驗,收集事例。第7段對重理論輕事例的錯誤傾向提出批評,引用了饒裕泰教授的話作為論據(jù),切合實際,富于針對性。第8段運用“有限與無眼”的故事和葉斯丕森的例子闡述觀察、實驗“不容易”的一個原因,指出觀察、實驗不能懶惰,必須具備換而不舍的精神。第9段闡述了觀察、實驗“不容易”的另一個原因,指出觀察、實驗不能有成見,必須有客觀的態(tài)度。第10段收束上文,進一步指出不愿觀察實驗的害處。第11段指出觀察、實驗必須自己去做,徹底堵住了不愿觀察、實驗者的退路。這一部分是第二部分論述的具體化和深化。
四、.總結全文:
文章緊緊圍繞治學過程中“虛與實”也就是理論和事例的關系問題,運用大量典型、生動的事實和理論材料,進行了全面透徹的論述。明確提出理論從事例中來,事例則從觀察和實驗中來的觀點。文章針對重理論輕事例的現(xiàn)實,在辯證立論、全面論述的基礎上,強調突出了觀察、實驗對理論形成的作用這一重點。全文第一部分提出兩者關系的問題,表明觀點;第二部分緊緊圍繞觀點,對兩者關系展開論述;第三部分在論述兩者關系的基礎上,進一步闡述觀察和實驗的有關問題,從整體到局部,逐步剖析,層層深人,不斷具體、深化,具有嚴密的邏輯性和較強的說服力。
高一數(shù)學函數(shù)教案 篇3
設函數(shù)y=f(x)的定義域為I,如果對應定義域I內的某個區(qū)間D內的任意兩個變量x1、x2,當x1
ⅰ在給出區(qū)間內任取x1、x2,則x1、x2∈D,且x1
ⅱ 做差值f(x1)-f(x2),并進行變形和配方,變?yōu)橐子谂袛嗾摰男问健?/p>
ⅲ判斷變形后的表達式f(x1)-f(x2)的符號,指出單調性。
復合函數(shù)y=f[g(x)]的單調性與構成它的函數(shù)u=g(x),y=f(u)的單調性密切相關,其規(guī)律為“同增異減”;多個函數(shù)的復合函數(shù),根據(jù)原則“減偶則增,減奇則減”。
函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調遞增區(qū)間為A和B,不能表示為A∪B。
對于函數(shù)f(x)定義域內的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數(shù);
對于函數(shù)f(x)定義域內的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。
ⅰ無論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關于原點對稱。
ⅱ奇函數(shù)的圖像關于原點對稱,偶函數(shù)的圖像關于y軸對稱。
ⅰ先確定函數(shù)的定義域是否關于原點對稱,若不關于原點對稱,則為非奇非偶函數(shù)。
ⅱ確定f(x) 和f(-x)的關系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。
⑴對于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。
⑵對于易于畫出函數(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。
ⅰ判斷二次函數(shù)的頂點是否在所求區(qū)間內,若在區(qū)間內,則接ⅱ,若不在區(qū)間內,則接ⅲ。
ⅱ 若二次函數(shù)的頂點在所求區(qū)間內,則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點為最小值,a0時的最大值或a
若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);
若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。
高一數(shù)學函數(shù)教案 篇4
教學目標:
(1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣
重點難點:
能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
教學過程:
一、試一試
1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,
AB長x(m)123456789
BC長(m)12
面積y(m2)48
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個函數(shù)的關系式,
對于1.,可讓學生根據(jù)表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。
對于2,可讓學生分組討論、交流,然后意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0
高一數(shù)學函數(shù)教案 篇5
(一)通過具體函數(shù),讓學生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學概念的建立過程,培養(yǎng)其抽象概括能力.
(二)理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應用定義判斷一些簡單函數(shù)的奇偶性.
(三)在經(jīng)歷概念形成的過程中,培養(yǎng)學生歸納、抽象概括能力,體驗數(shù)學既是抽象的又是具體的.
這節(jié)內容學生在初中雖沒學過,但已經(jīng)學習過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎上,引入奇、偶函數(shù)的概念,便于學生理解.在引入概念時始終結合具體函數(shù)的圖像,增強直觀性,這樣更符合學生的認知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學生理解:奇函數(shù)、偶函數(shù)的定義域是關于原點對稱的非空數(shù)集;對于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎上,讓學生了解:奇函數(shù)、偶函數(shù)的矛盾概念——非奇非偶函數(shù).關于單調性與奇偶性關系,引導學生拓展延伸,可以取得理想的效果.
1.觀察如下兩圖(圖略),思考并討論以下問題:
(1)這兩個函數(shù)圖像有什么共同特征?
(2)相應的兩個函數(shù)值對應表是如何體現(xiàn)這些特征的?
可以看到兩個函數(shù)的圖像都關于y軸對稱.從函數(shù)值對應表可以看到,當自變量x取一對相反數(shù)時,相應的兩個函數(shù)值相同.
2.觀察函數(shù)f(x)=x和f(x)=的.圖像,并完成下面的兩個函數(shù)值對應表,然后說出這兩個函數(shù)有什么共同特征.
可以看到兩個函數(shù)的圖像都關于原點對稱.函數(shù)圖像的這個特征,反映在解析式上就是:當自變量x取一對相反數(shù)時,相應的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時,稱函數(shù)y=f(x)為奇函數(shù).
由上面的分析討論引導學生建立奇函數(shù)、偶函數(shù)的定義.
1.奇、偶函數(shù)的定義.
如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).
2.提出問題,組織學生討論.
(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?
(2)奇、偶函數(shù)的圖像有什么特征?
(3)奇、偶函數(shù)的定義域有什么特征?
[例題]
1.判斷下列函數(shù)的奇偶性.
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當x>0時,f(x)=x(1+x),求f(x)的表達式.
解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).
(2)當x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內是增函數(shù),還是減函數(shù),并證明你的結論.
解:先結合圖像特征:偶函數(shù)的圖像關于y軸對稱,猜想f(x)在(0,+∞)內是增函數(shù),證明如下:
∴f(x)在(0,+∞)上是增函數(shù).
思考:奇函數(shù)或偶函數(shù)在關于原點對稱的兩個區(qū)間上的單調性有何關系?
[練習]
1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調性如何.
4.設f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個?
2.設f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).
4.一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?
高中數(shù)列教案匯總
如果你對“高中數(shù)列教案”有疑問請參考下方的資料獲得答案,希望這個信息能夠對你有所啟示如果你覺得不錯請分享給身邊的人。教案課件既關系到教學步驟,也關系到教學的課程標準,每位老師應該設計好自己的教案課件。教案是教學質量控制和保障的重要手段。
高中數(shù)列教案(篇1)
等比數(shù)列前n項和的公式推導,是教學的一個重點,也是一個教學難點。在新課程理念的指導下,筆者采用學案導學的教學方式,發(fā)揮學生學習的主體性,放手讓學生以導學案為媒介,預習、思考、討論,在課上大膽交流,較好的完成了教學任務,使學生體驗到成功的樂趣,從而增強了學習數(shù)學的興趣,取得較好的效果。下面是導學案的設計和應用的片段。
導學案設計:
閱讀教材第55頁,如果你想求解“國際象棋棋盤中放多少麥?!边@個問題,會不會真的乘方去算?等比數(shù)列求和公式的推導可是考察我們智慧的一件法寶。很多同學通過看書,恐怕也只是知其然不知其所以然。那就回答以下問題,自己體驗一下,看有什么收獲。
問題2:等差數(shù)列求和公式是如何推導的?公式有何特征?能否把該種思想類比到等比數(shù)列當中?
課堂實錄:
教師:大家都在課下,對等比數(shù)列求和進行了較為充分的預習,今天我們就一起交流展示,重新體驗偉大公式的發(fā)現(xiàn)過程。請有所收獲的同學來展示。
學生A邊講邊板書:我們已經(jīng)學習等比數(shù)列的概念和通項公式, , ,可以把等比數(shù)列前n項和表示為 表示為 ,也就是 ,即 ,整理得 ,當 時, 。把 代入,還可以得到 。
學生A:等差數(shù)列的前n項和公式中Sn是用量 、 、d和n表示的,所以,我想可不可以用 、 、q和n來表示Sn呢?而 是很容易發(fā)現(xiàn)的,也就有了這種推到方法。
學生B:我有另一種推到方法。等差數(shù)列求和公式推到中用性質消去了 中的中間n-2項,我把Sn改寫成 ①的形式,從第二項起每一項比前一項多乘一個q,試圖消項,我想到解方程組中的加減消元法,將①中兩邊同時乘以q,得到 ②,然后用①-②得到 ,后面就和同學甲說的一樣了。
教師:乙同學的.推導方法聯(lián)想了解方程組的思想,很巧妙的消項解題,那么看一看問題三的收獲把?
學生陷入深思中,也有同學開始小聲討論,教師不急于說出結果,知識在巡視中對困難學生進行點播。
學生D:我發(fā)現(xiàn)了。結果中有一部分數(shù)列呈現(xiàn)等比數(shù)列的特點,x的次數(shù)逐一升高。這種手法跟剛才同學B的推導手法一致,雖然沒有消項,但出現(xiàn)等比特點,就可以用公式求解了。分成x=1和 兩種情況討論。
教師:非常好。兩位同學的說法結合到一塊,就嚴謹了。那么要想得到這樣的結果,Sn又有什么特點呢?
學生D:Sn中含有等比數(shù)列的特點,而且各項的系數(shù)中還是等差數(shù)列的特點。
教師總結:已知數(shù)列 ,如果 ,其中{ }是等差數(shù)列,{ }是等比數(shù)列,都可以使用這種方法求解,稱這種方法叫做錯位相減法。
第一,數(shù)學學習是一種活動,是教師指導下得學生再創(chuàng)造的活動。“指導再創(chuàng)造意味著在創(chuàng)造的自由性和滿足師生的要求之間達到一種平衡”,這個平衡的關鍵是教師指導的“度”的把握,教師指導的過多,將限制學生的建構活動,而指導的不到位,又無法把學生引導到活動中去。在本節(jié)課中,教師以導學案的設問以及課堂中的補充設問,充分調動學生的求知欲,讓學生在探索數(shù)學知識的形成過程中,感受到數(shù)學知識是從他們的頭腦中產生的,他們是數(shù)學的發(fā)明者,創(chuàng)造者。
第二,教師在教學中應當因材施教。對于思維能力強,基礎扎實的同學教師要努力給他們搭建展示的平臺,對于理解有困難的學生,教師要耐心指導。本節(jié)課中,教師在巡視中解決了相當一部分同學問題,但仍有個別學生體驗不深,如果能夠再舉幾個例子,相信效果會更好。
第三,注重學生學習主體性的發(fā)揮,培養(yǎng)學生交流表達的習慣。學生的認知是通過內化與外顯的多次交替而逐步發(fā)展、完善的,學生在數(shù)學活動中形成了主體性,在交流活動中表現(xiàn)著主體性;學生主體性的發(fā)揮又反過來促進思維的發(fā)展,滿足學生對知識的不懈追求。
高中數(shù)列教案(篇2)
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內容,從教材的編寫順序上來看,等比數(shù)列的前n項和是第一章“數(shù)列”第六節(jié)的內容,它是“等差數(shù)列的前n項和”與“等比數(shù)列”內容的延續(xù)、與前面學習的函數(shù)等知識也有著密切的聯(lián)系。就知識的應用價值上來看,它不僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。就內容的人文價值上來看,等比數(shù)列的前n項和公式的探究與推導需要學生觀察、分析、歸納、猜想,有助于培養(yǎng)學生的創(chuàng)新思維和探索精神,是培養(yǎng)學生應用意識和數(shù)學能力的良好載體。
從學生的思維特點看,很容易把本節(jié)內容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。
教學對象是剛進入高二的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但對問題的分析缺乏深刻性和嚴謹性。
公式推導所使用的“錯位相減法”是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點。
1.知識與技能目標:理解等比數(shù)列的前n項和公式的推導方法;掌握等比數(shù)列的前n項和公式并能運用公式解決一些簡單問題。
2、過程與方法目標:通過公式的推導過程,培養(yǎng)學生猜想、分析、綜合的思維能力,提高學生的建模意識及探究問題、分析與解決問題的能力,體會公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉化思想,優(yōu)化思維品質。
3、情感態(tài)度與價值觀:通過經(jīng)歷對公式的探索,激發(fā)學生的求知欲,鼓勵學生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質,從中獲得成功的體驗,感受思維的奇異美、結構的對稱美、形式的簡潔美、數(shù)學的嚴謹美。用數(shù)學的觀點看問題,一些所謂不可理解的事就可以給出合理的解釋,從而幫助我們用科學的態(tài)度認識世界。
本節(jié)課屬于新授課型,主要利用計算機輔助教學,
采用啟發(fā)探究,合作學習,自主學習等的教學模式、
學生是認知的主體,也是教學活動的主體,設計教學過程必須遵循學生的認知規(guī)律,引導學生去經(jīng)歷知識的形成與發(fā)展過程,結合本節(jié)課的特點,我按照自主學習的教學模式來設計如下的教學過程,目的是在教學過程中促使學生自主學習,培養(yǎng)自主學習的習慣和意識,形成自主學習的能力。
一個窮人到富人那里去借錢,原以為富人不愿意,哪知富人一口答應了下來,但提出了如下條件:在30天中,富人第一天借給窮人1萬元,第二天借給窮人2萬元,以后每天所借的錢數(shù)都比上一天多1萬;但借錢第一天,窮人還1分錢,第二天還2分錢,以后每天所還的錢數(shù)都是上一天的兩倍,30天后互不相欠、窮人聽后覺得挺劃算,本想定下來,但又想到此富人是吝嗇出了名的,怕上當受騙,所以很為難?!闭堅谧耐瑢W思考討論一下,窮人能否向富人借錢?
啟發(fā)引導學生數(shù)學地觀察問題,構建數(shù)學模型。
學生直覺認為窮人可以向富人借錢,教師引導學生自主探求,得出:
(2)教師緊接著把如何求?的問題讓學生探究,
②若②式減去①式,可以消去相同的項,得到:
【設計意圖】留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是很顯然的事,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而培養(yǎng)學生的辯證思維能力。
解決情境問題:經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就可以消去了,得到:≈1073(萬元)>465(萬元)。老師強調指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
【設計意圖】經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了,讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心,同時也為推導一般等比數(shù)列前n項和提供了方法。
這時我再順勢引導學生將結論一般化,設等比數(shù)列為,公比為q,如何求它的前n項和?讓學生自主完成,然后對個別學生進行指導。
這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?
【設計意圖】在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。
探究2.求等比數(shù)列的.第5項到第10項的和.
方法2:此等比數(shù)列的連續(xù)項從第5項到第10項構成一個新的等比數(shù)列。
【設計意圖】采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數(shù)學認知結構的形成.通過以上形式,讓全體學生都參與教學,以此培養(yǎng)學生自主學習的意識.解題時,以學生分析為主,教師適時給予點撥。
以問題的形式出現(xiàn),引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數(shù)學思想方法兩方面總結。
【設計意圖】以此培養(yǎng)學生的口頭表達能力,歸納概括能力。
若=3,=81,求q及,若,求及q。
【設計意圖】對公式的再認識,剖析公式中的基本量及結構特征,識記公式,并加強計算能力的訓練。
【設計意圖】布置彈性作業(yè)以使各個層次的學生都有所發(fā)展、讓學有余力的學生有思考的空間,便于學生開展自主學習。
本節(jié)課通過推導方法的研究,使學生掌握了等比數(shù)列前n項和公式.錯位相減:變加為減,等價轉化;遞推思想:縱橫聯(lián)系,揭示本質;學生從中深刻地領會到推導過程中所蘊含的數(shù)學思想,培養(yǎng)了學生思維的深刻性、敏銳性、廣闊性、批判性.同時通過展示交流,學生點評,教師總結,使學生既鞏固了知識,又形成了技能,在此基礎上,通過民主和諧的課堂氛圍,培養(yǎng)了學生自主學習、合作交流的學習習慣,也培養(yǎng)了學生勇于探索、不斷創(chuàng)新的思維品質,形成學習能力。
1.情境設置生活化、
本著新課程的教學理念,考慮到高二學生的心理特點,讓學生學生初步了解“數(shù)學來源于生活”,采用故事的形式創(chuàng)設問題情景,意在營造和諧、積極的學習氣氛,激發(fā)學生主動探究的欲望。
2.問題探究活動化.
教學中本著以學生發(fā)展為本的理念,充分給學生想的時間、說的機會以及展示思維過程的舞臺,通過他們自主學習、合作探究,展示學生解決問題的思想方法,共享學習成果,體驗數(shù)學學習成功的喜悅、通過師生之間不斷合作和交流,發(fā)展學生的數(shù)學觀察能力和語言表達能力,培養(yǎng)學生思維的發(fā)散性和嚴謹性。
3.辨析質疑結構化.
在理解公式的基礎上,及時進行正反兩方面的“短、平、快”填空和判斷是非練習、通過總結、辨析和反思,強化了公式的結構特征,促進學生主動建構,有助于學生形成知識模塊,優(yōu)化知識體系。
4.鞏固提高梯度化.
例題通過公式的正用和逆用進一步提高學生運用知識的能力;由教科書中的例題改編而成,并進行適當?shù)淖兪?可以提高學生的模式識別的能力,培養(yǎng)學生思維的深刻性和靈活性。
5.思路拓廣數(shù)學化.
從整理知識提升到強化方法,由課內鞏固延伸到課外思考,變“知識本位”為“學生本位”,使數(shù)學學習成為提高學生素質的有效途徑。以生活中的實例作為思考,讓學生認識到數(shù)學來源于生活并應用于生活,生活中處處有數(shù)學.
6.作業(yè)布置彈性化.
通過布置彈性作業(yè),為學有余力的學生提供進一步發(fā)展的空間,有利于豐富學生的知識,拓展學生的視野,提高學生的數(shù)學素養(yǎng).
學生的根據(jù)高二學生心理特點、教材內容、遵循因材施教原則和啟發(fā)性教學思想,本節(jié)課的教學策略與方法我采用規(guī)則學習和問題解決策略,即“案例—公式—應用”,案例為淺層次要求,使學生有概括印象。公式為中層次要求,由淺入深,重難點集中推導講解,便于突破。應用為綜合要求,多角度、多情境中消化鞏固所學,反饋驗證本節(jié)教學目標的落實。
其中,案例是基礎,使學生感知教材;公式為關鍵,使學生理解教材;練習為應用,使學生鞏固知識,舉一反三。
在這三步教學中,以啟發(fā)性強的小設問層層推導,輔之以學生的分組小討論并充分運用直觀完整的板書和計算機課件等教輔用具、手段,改變教師講、學生聽的填鴨式教學模式,充分體現(xiàn)學生是主體,教師教學服務于學生的思路,而且學生通過“案例—公式—應用”,由淺入深,由感性到理性,由直觀到抽象,不僅加深了學生理解鞏固與應用,也培養(yǎng)了思維能力。
這節(jié)課總體上感覺備課比較充分,各個環(huán)節(jié)相銜接,能夠形成一節(jié)完整就為系統(tǒng)的課。本節(jié)課教學過程分為導入新課、公式推導、合作探究、課堂小結、當堂檢測、布置作業(yè)。本節(jié)課總體上講對于內容的把握基本到位,對學生的定位準確,教學過程中留給學生思考的時間,以學生為主體。
亮點之處:
學生成為課堂的主體,教師要甘當學生的綠葉由于數(shù)學的抽象、思維嚴謹?shù)忍攸c,學生往往對于一些較為復雜或者變化多樣的題目容易望而生畏,出現(xiàn)懶得動腦思考、動筆去做的現(xiàn)象。教師也常因為時間的限制不可能給學生過多的時間去做“無用功”。在本節(jié)課上我放手讓學生去思考,讓學生去摸索。不怕學生出錯,就是讓學生能夠在摸索中增強思維能力、解題技能和計算經(jīng)驗。特別是在例3中,教師針對題目做了簡要的分析和提示,讓學生去嘗試著解題。張漫同學的板書詳盡,將思路方法概括表述出來,過程完整。只是結果出現(xiàn)了一個小錯誤,教師在點評過程中給予指出,同時也個結果錯誤也是學生經(jīng)常犯的。
高中數(shù)列教案(篇3)
一、教學目標
1.知識與能力目標
①使學生理解數(shù)列極限的概念和描述性定義。
②使學生會判斷一些簡單數(shù)列的極限,了解數(shù)列極限的“e-N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。
③通過觀察運動和變化的過程,歸納總結數(shù)列與其極限的特定關系,提高學生的數(shù)學概括能力和抽象思維能力。
2.過程與方法目標
培養(yǎng)學生的極限的思想方法和獨立學習的能力。
3.情感、態(tài)度、價值觀目標
使學生初步認識有限與無限、近似與精確、量變與質變的辯證關系,培養(yǎng)學生的辯證唯物主義觀點。
二、教學重點和難點
教學重點:數(shù)列極限的概念和定義。
教學難點:數(shù)列極限的“ε―N”定義的理解。
三、教學對象分析
這節(jié)課是數(shù)列極限的第一節(jié)課,足學生學習極限的入門課,對于學生來說是一個全新的內容,學生的思維正處于由經(jīng)驗型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內容求球的表面積和體積時對極限思想已有接觸,而學生在以往的數(shù)學學習中主要接觸的是關于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導他們作出描述性定義“當n無限增大時,數(shù)列{an}中的項an無限趨近于常數(shù)A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數(shù)列的極限。但要使他們在一節(jié)課內掌握“ε-N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數(shù)列的極限。使學生理解極限的基本概念,認識什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。
四、教學策略及教法設計
本課是采用啟發(fā)式講授教學法,通過多媒體課件演示及學生討論的方法進行教學。通過學生比較熟悉的一個實際問題入手,引起學生的注意,激發(fā)學生的學習興趣。然后通過具體的兩個比較簡單的數(shù)列,運用多媒體課件演示向學生展示了數(shù)列中的各項隨著項數(shù)的增大,無限地趨向于某個常數(shù)的過程,讓學生在觀察的基礎上討論總結出這兩個數(shù)列的特征,從而得出數(shù)列極限的一個描述性定義。再在教師的引導下分析數(shù)列極限的各種不同情況。從而對數(shù)列極限有了直觀上的認識,接著讓學生根據(jù)數(shù)列中各項的情況判斷一些簡單的數(shù)列的極限。從而達到深化定義的效果。最后進行練習鞏固,通過這樣的一個完整的教學過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學生逐步地了解極限這個新的概念,為下節(jié)課的極限的運算及應用做準備,為以后學習高等數(shù)學知識打下基礎。在整個教學過程中注意突出重點,突破難點,達到教學目標的要求。
五、教學過程
1.創(chuàng)設情境
課件展示創(chuàng)設情境動畫。
今天我們將要學習一個很重要的新的知識。
情境
1、我國古代數(shù)學家劉徽于公元263年創(chuàng)立“割圓術”,“割之彌細,所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。
情境
2、我國古代哲學家莊周所著的《莊子?天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之???如此下去,無限次地切,每次都切一半,問是否會切完?
大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠不會變成零。從而引出極限的概念。
2.定義探究
展示定義探索(一)動畫演示。
問題1:請觀察以下無窮數(shù)列,當n無限增大時,a,I的變化趨勢有什么特點?
(1)1/2,2/3,3/4,?n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n??
問題2:觀察課件演示,請分析以上兩個數(shù)列隨項數(shù)n的增大項有那些特點?
師生一起歸納總結出以下結論:數(shù)列(1)項數(shù)n無限增大時,項無限趨近于1;數(shù)列(2)項數(shù)n無限增大時,項無限趨近于1。
那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個數(shù)列只是形式不同,它們都是隨項數(shù)n的無限增大,項無限趨近于某一確定常數(shù),這個常數(shù)叫做這個數(shù)列的極限。
那么,什么叫數(shù)列的極限呢?對于無窮數(shù)列an,如果當n無限增大時,an無限趨向于某一個常數(shù)A,則稱A是數(shù)列an的極限。
提出問題3:怎樣用數(shù)學語言來定量描述呢?怎樣用數(shù)學語言來描述上述數(shù)列的變化趨勢?
展示定義探索(二)動畫演示,師生共同總結發(fā)現(xiàn)在數(shù)軸上兩點間距離越小,項與1越趨近,因此可以借助兩點間距離無限小的方式來描述項無限趨近常數(shù)。無論預先指定多么小的正數(shù)e,如取e=O-1,總能在數(shù)列中找到一項am,使得an項后面的所有項與1的差的絕對值都小于ε,若取£=0。0001,則第6項后面的所有項與1的差的絕對值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結出數(shù)列的極限定義中應包含哪量(用這些量來描述數(shù)列1的極限)。
數(shù)列的極限為:對于任意的ε>0,如果總存在自然數(shù)N,當n>N時,不等式|an-A|n的極限。
定義探索動畫(一):
課件可以實現(xiàn)任意輸入一個n值,可以計算出相應的數(shù)列第n項的值,并且動畫演示數(shù)列的變化過程。如圖1所示是課件運行時的一個畫面。
定義探索動畫(二)課件可以實現(xiàn)任意輸入一個n值,可以計算出相應的數(shù)列第n項的值和I an一1I的值,并且動畫演示出第an項和1之間的距離。如圖2所示是課件運行時的一個畫面。
3.知識應用
這里舉了3道例題,與學生一塊思考,一起分析作答。
例1.已知數(shù)列:
1,-1/2,1/3,-1/4,1/5??,(-1)n+11/n,??
(1)計算|an-0|(2)第幾項后面的所有項與0的差的絕對值都小于0.017都小于任意指定的正數(shù)。
(3)確定這個數(shù)列的極限。
例2.已知數(shù)列:
已知數(shù)列:3/2,9/4,15/8??,2+(-1/2)n,??。
猜測這個數(shù)列有無極限,如果有,應該是什么數(shù)?并求出從第幾項開始,各項與這個極限的差都小于0.1,從第幾項開始,各項與這個極限的差都小于0.017
例3.求常數(shù)數(shù)列一7,一7,一7,一7,??的極限。
5.知識小結
這節(jié)課我們研究了數(shù)列極限的概念,對數(shù)列極限有了初步的認識。數(shù)列極限研究的是無限變化的趨勢,而通過對數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質變之間的辯證關系在這里得到了充分的體現(xiàn)。
課后練習:
(1)判斷下列數(shù)列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。
(2)課本練習1,2。
6.探究性問題
設計研究性學習的思考題。
提出問題:
芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠也無法超過在他前面慢慢爬行的烏龜,因為當阿基里斯到達烏龜?shù)钠鹋茳c時,烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當阿基里斯追到O.1公里的地方,烏龜又向前跑了0.01公里。當阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里??這樣一直追下去,阿基里斯能追上烏龜嗎?
這里是研究性學習內容,以學生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學內容,進一步提高了學生學習數(shù)列的極限的興趣。同時也為學生創(chuàng)設了課下交流與討論的情境,逐步培養(yǎng)學生相互合作、交流和討論的習慣,使學生感受到了數(shù)學來源于生活,又服務于生活的實質,逐步養(yǎng)成用數(shù)學的知識去解決生活中遇到的實際問題的習慣。
高中數(shù)列教案(篇4)
依據(jù)如下:
(1)從認知領域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學生最高需求層次的掌握策略與方法的策略性知識。
(2) 從學科知識上講,推導屬于學科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3) 從心理學上講,學生對這項學習內容的“熟悉度”不高,原有知識薄弱,不易理解。
突破難點方法:
(1)明確難點、分解難點,采用層層推導延伸法,利用學生已有的知識切入 ,淺化知識內容。比如可以先求麥粒的總數(shù),通過設問使學生得到麥粒的總數(shù)為 ,然后引導學生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有 ,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學們找到解決問題的關鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和 ……+ 的關鍵也應是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式 ,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
后兩種方法可以啟發(fā)引導學生自行完成。這樣學生從各種途徑,用多種方法推導公式,從而培養(yǎng)學生的創(chuàng)造性思維。
等比數(shù)列前n項和公式及應用是本節(jié)課的重點內容。
依據(jù)如下:
(1)新大綱中有較高層次的要求。
(2)教學地位重要,是教學中全部學習任務中必須優(yōu)先完成的任務。
(3)這項知識內容有廣泛的實際應用,很多問題都要轉化為等比數(shù)列的求和上來。
突出重點方法:
(1)明確重點。利用高一學生求知積極性和初步具有的數(shù)學思維能力,運用比較法來突出公式的內容(彩色粉筆板書): ,強調公式的應用范圍: 中可知三求二。
(2)運用糾錯法對公式中學生容易出錯的地方,即公式的條件 ,以精練的語言給予強調,并指出q=1時, 。再有就是有些數(shù)列求和的項數(shù)易錯,例如 的項數(shù)是n+1而不是n。
(3)創(chuàng)設條件、充分保證。設置低、中、高三個層次的例題,即公式的直接應用、公式的變形應用和實際應用來突出這一重點。對應用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
2.實際應用題.
這樣設置主要依據(jù):
(1)練習題與大綱中規(guī)定的教學目標與任務及本節(jié)課的重點、難點有相對應的匹配關系。
(2)遵循鞏固性原則和傳授——反饋——再傳授的教學系統(tǒng)的思想確立這樣的習題 。
(3)應用題比較切合對智力技能進行檢測,有利于數(shù)學能力的提高。同時,它可以使學生在后半程學習中保持興趣的持續(xù)性和學習的主動性,。
根據(jù)高一學生心理特點、教材內容、遵循因材施教原則和啟發(fā)性教學思想,本節(jié)課的教學策略與方法我采用規(guī)則學習和問題解決策略,即“案例—公式—應用”,簡稱“例—規(guī)”法。
案例為淺層次要求,使學生有概括印象。
公式為中層次要求,由淺入深,重難點集中推導講解,便于突破。
應用為綜合要求,多角度、多情境中消化鞏固所學,反饋驗證本節(jié)教學目標的落實。
其中,案例是基礎,是學生感知教材;公式為關鍵,是學生理解教材;練習為應用,是學生鞏固知識,舉一反三。
在這三步教學中,以啟發(fā)性強的小設問層層推導,輔之以學生的分組小討論并充分運用直觀完整的板書、棋盤教具和計算機課件等教輔用具、手段,改變教師講、學生聽的填鴨式教學模式,充分體現(xiàn)學生是主體,教師教學服務于學生的思路,而且學生通過“案例—公式—應用”,由淺入深,由感性到理性,由直觀到抽象,加深了學生理解鞏固與應用,有利于培養(yǎng)學生思維能力,落實好教學任務。
在提倡教育改革的今天,對學生進行思維技能培養(yǎng)已成了我們非常重要的一項教學任務。研究性學習已在全國范圍內展開,等比數(shù)列就是一個進行研究性學習的好題材。在我們學??梢园凑誌ntel未來教育計劃培訓的模式,學完本節(jié)課后,教師可以給學生布置一個研究分期付款的課題,讓學生利用網(wǎng)絡資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學生主動探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識和團結協(xié)作的精神。
高中數(shù)列教案(篇5)
1.掌握等比數(shù)列前 項和公式,并能運用公式解決簡單的問題.
(1)理解公式的推導過程,體會轉化的思想;
(2)用方程的思想認識等比數(shù)列前 項和公式,利用公式知三求一;與通項公式結合知三求二;
2.通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉化的思想.
3.通過公式推導的教學,對學生進行思維的嚴謹性的訓練,培養(yǎng)他們實事求是的科學態(tài)度.
先用錯位相減法推出等比數(shù)列前 項和公式,而后運用公式解決一些問題,并將通項公式與前 項和公式結合解決問題,還要用錯位相減法求一些數(shù)列的前 項和.
教學重點、難點是等比數(shù)列前 項和公式的推導與應用.公式的推導中蘊含了豐富的數(shù)學思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前 項和公式的要求,不單是要記住公式,更重要的是掌握推導公式的方法. 等比數(shù)列前 項和公式是分情況討論的,在運用中要特別注意 和 兩種情況.
(1)本節(jié)內容分為兩課時,一節(jié)為等比數(shù)列前 項和公式的推導與應用,一節(jié)為通項公式與前 項和公式的綜合運用,另外應補充一節(jié)數(shù)列求和問題.
(2)等比數(shù)列前 項和公式的推導是重點內容,引導學生觀察實例,發(fā)現(xiàn)規(guī)律,歸納總結,證明結論.
(3)等比數(shù)列前 項和公式的推導的其他方法可以給出,提高學生學習的興趣.
(4)編擬例題時要全面,不要忽略 的情況.
(5)通項公式與前 項和公式的綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數(shù)方程難度大.
(6)補充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問題.
(1)通過教學使學生掌握等比數(shù)列前 項和公式的推導過程,并能初步運用這一方法求一些數(shù)列的前 項和.
(2)通過公式的推導過程,培養(yǎng)學生猜想、分析、綜合能力,提高學生的數(shù)學素質.
(3)通過教學進一步滲透從特殊到一般,再從一般到特殊的辯證觀點,培養(yǎng)學生嚴謹?shù)?學習態(tài)度.
教學重點是公式的推導及運用,難點是公式推導的思路.
記 ,式中有64項,后項與前項的比為公比2,當每一項都乘以2后,中間有62項是對應相等的,作差可以相互抵消.
②-①得 即 .
由此對于一般的等比數(shù)列,其前 項和 ,如何化簡?
仿照公比為2的等比數(shù)列求和方法,等式兩邊應同乘以等比數(shù)列的公比 ,即
④,
③-④得 ⑤,(提問學生如何處理,適時提醒學生注意 的取值)
反思推導求和公式的方法――錯位相減法,可以求形如 的數(shù)列的和,其中 為等差數(shù)列, 為等比數(shù)列.
設 ,其中 為等差數(shù)列, 為等比數(shù)列,公比為 ,利用錯位相減法求和.
于是 .
說明:錯位相減法實際上是把一個數(shù)列求和問題轉化為等比數(shù)列求和的問題.
公式其它應用問題注意對公比的分類討論即可.
三、小結:
1.等比數(shù)列前 項和公式推導中蘊含的思想方法以及公式的應用;
2.用錯位相減法求一些數(shù)列的前 項和.
高中數(shù)列教案(篇6)
教學目標
1.理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式,并能運用公式解決簡單的問題。
(1)正確理解等比數(shù)列的定義,了解公比的概念,明確一個數(shù)列是等比數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等比數(shù)列,了解等比中項的概念;
(2)正確認識使用等比數(shù)列的表示法,能靈活運用通項公式求等比數(shù)列的首項、公比、項數(shù)及指定的項;
(3)通過通項公式認識等比數(shù)列的性質,能解決某些實際問題。
2.通過對等比數(shù)列的研究,逐步培養(yǎng)學生觀察、類比、歸納、猜想等思維品質。
3.通過對等比數(shù)列概念的歸納,進一步培養(yǎng)學生嚴密的思維習慣,以及實事求是的科學態(tài)度。
教材分析
(1)知識結構
等比數(shù)列是另一個簡單常見的數(shù)列,研究內容可與等差數(shù)列類比,首先歸納出等比數(shù)列的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.
(2)重點、難點分析
教學重點是等比數(shù)列的定義和對通項公式的認識與應用,教學難點在于等比數(shù)列通項公式的推導和運用.
①與等差數(shù)列一樣,等比數(shù)列也是特殊的數(shù)列,二者有許多相同的性質,但也有明顯的區(qū)別,可根據(jù)定義與通項公式得出等比數(shù)列的特性,這些是教學的重點.
②雖然在等差數(shù)列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.
③對等差數(shù)列、等比數(shù)列的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.
教學建議
(1)建議本節(jié)課分兩課時,一節(jié)課為等比數(shù)列的概念,一節(jié)課為等比數(shù)列通項公式的應用.
(2)等比數(shù)列概念的引入,可給出幾個具體的例子,由學生概括這些數(shù)列的相同特征,從而得到等比數(shù)列的定義.也可將幾個等差數(shù)列和幾個等比數(shù)列混在一起給出,由學生將這些數(shù)列進行分類,有一種是按等差、等比來分的,由此對比地概括等比數(shù)列的定義.
(3)根據(jù)定義讓學生分析等比數(shù)列的公比不為0,以及每一項均不為0的特性,加深對概念的理解.
(4)對比等差數(shù)列的表示法,由學生歸納等比數(shù)列的各種表示法. 啟發(fā)學生用函數(shù)觀點認識通項公式,由通項公式的結構特征畫數(shù)列的圖象.
(5)由于有了等差數(shù)列的研究經(jīng)驗,等比數(shù)列的研究完全可以放手讓學生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).
(6)可讓學生相互出題,解題,講題,充分發(fā)揮學生的主體作用.
教學設計示例
課題:等比數(shù)列的概念
教學目標
1.通過教學使學生理解等比數(shù)列的概念,推導并掌握通項公式.
2.使學生進一步體會類比、歸納的思想,培養(yǎng)學生的觀察、概括能力.
3.培養(yǎng)學生勤于思考,實事求是的精神,及嚴謹?shù)目茖W態(tài)度.
教學重點,難點
重點、難點是等比數(shù)列的定義的歸納及通項公式的推導.
教學用具
投影儀,多媒體軟件,電腦.
教學方法
討論、談話法.
教學過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標準.(幻燈片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由學生發(fā)表意見(可能按項與項之間的關系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質的一類數(shù)列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列).
二、講解新課
請學生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)
這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列. (這里播放變形蟲分裂的多媒體軟件的第一步)
等比數(shù)列(板書)
1.等比數(shù)列的定義(板書)
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義.學生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎是可以由學生概括出來的.教師寫出等比數(shù)列的定義,標注出重點詞語.
請學生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列.學生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數(shù)列的一般形式,學生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學生討論后得出結論:當時,數(shù)列既是等差又是等比數(shù)列,當時,它只是等差數(shù)列,而不是等比數(shù)列.教師追問理由,引出對等比數(shù)列的認識:
2.對定義的認識(板書)
(1)等比數(shù)列的首項不為0;
(2)等比數(shù)列的每一項都不為0,即
問題:一個數(shù)列各項均不為0是這個數(shù)列為等比數(shù)列的什么條件?
(3)公比不為0.
用數(shù)學式子表示等比數(shù)列的定義.
是等比數(shù)列①.在這個式子的寫法上可能會有一些爭議,如寫成
,可讓學生研究行不行,好不好;接下來再問,能否改寫為是等比數(shù)列?為什么不能? 式子給出了數(shù)列第項與第項的數(shù)量關系,但能否確定一個等比數(shù)列?(不能)確定一個等比數(shù)列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.
3.等比數(shù)列的通項公式(板書)
問題:用和表示第項
①不完全歸納法
②疊乘法
,…,,這個式子相乘得,所以(板書)(1)等比數(shù)列的通項公式
得出通項公式后,讓學生思考如何認識通項公式.
(板書)(2)對公式的認識
由學生來說,最后歸結:
①函數(shù)觀點;
②方程思想(因在等差數(shù)列中已有認識,此處再復習鞏固而已).
這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節(jié)課再研究.同學可以試著編幾道題。
三、小結
1.本節(jié)課研究了等比數(shù)列的概念,得到了通項公式;
2.注意在研究內容與方法上要與等差數(shù)列相類比;
3.用方程的思想認識通項公式,并加以應用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是 粒,用計算器算一下吧(對數(shù)算也行)。
小編推薦各科教學設計:
、、、、、、、、、、、、
高中數(shù)列教案(篇7)
1.掌握等比數(shù)列前 項和公式,并能運用公式解決簡單的問題.
(1)理解公式的推導過程,體會轉化的思想;
(2)用方程的思想認識等比數(shù)列前 項和公式,利用公式知三求一;與通項公式結合知三求二;
2.通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉化的思想.
3.通過公式推導的教學,對學生進行思維的嚴謹性的訓練,培養(yǎng)他們實事求是的科學態(tài)度.
先用錯位相減法推出等比數(shù)列前 項和公式,而后運用公式解決一些問題,并將通項公式與前 項和公式結合解決問題,還要用錯位相減法求一些數(shù)列的前 項和.
教學重點、難點是等比數(shù)列前 項和公式的推導與應用.公式的推導中蘊含了豐富的數(shù)學思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前 項和公式的要求,不單是要記住公式,更重要的是掌握推導公式的方法. 等比數(shù)列前 項和公式是分情況討論的,在運用中要特別注意 和 兩種情況.
(1)本節(jié)內容分為兩課時,一節(jié)為等比數(shù)列前 項和公式的推導與應用,一節(jié)為通項公式與前 項和公式的綜合運用,另外應補充一節(jié)數(shù)列求和問題.
(3)等比數(shù)列前 項和公式的推導的其他方法可以給出,提高學生學習的興趣.
(4)編擬例題時要全面,不要忽略 的情況.
(5)通項公式與前 項和公式的.綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數(shù)方程難度大.
(6)補充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問題.
高中數(shù)列教案(篇8)
所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1)
qSn =a1*q^1+a1q^2+...+a1*q^n (2)
(1)-(2)注意(1)式的第一項不變。
把(1)式的第二項減去(2)式的第一項。
把(1)式的第三項減去(2)式的第二項。
以此類推,把(1)式的第n項減去(2)式的第n-1項。
(2)式的.第n項不變,這叫錯位相減,其目的就是消去這此公共項。
即Sn =a1(1-q^n)/(1-q)。
①若 m、n、p、q∈N*,且m+n=p+q,則am*an=ap*aq;
②在等比數(shù)列中,依次每 k項之和仍成zhi等比數(shù)列.
“G是a、b的等比中項”dao“G^2=ab(G≠0)”.
③若(an)是等比數(shù)列,公比為q1,(bn)也是等比數(shù)列,公比是q2,則
(a2n),(a3n)…是等比數(shù)列,公比為q1^2,q1^3…
(can),c是常數(shù),(an*bn),(an/bn)是等比數(shù)列,公比為q1,q1q2,q1/q2。
(5) 等比數(shù)列前n項之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比數(shù)列中,首項A1與公比q都不為零.
(6)由于首項為a1,公比為q的等比數(shù)列的通向公式可以寫成an*q/a1=q^n,它的指數(shù)函數(shù)y=a^x有著密切的聯(lián)系,從而可以利用指數(shù)函數(shù)的性質來研究等比數(shù)列
高中數(shù)列教案(篇9)
一、概述
教材內容:等比數(shù)列的概念和通項公式的推導及簡單應用 教材難點:靈活應用等比數(shù)列及通項公式解決一般問題 教材重點:等比數(shù)列的概念和通項公式
二、教學目標分析
1. 知識目標
1)
2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項公式及其推導
2.能力目標
1)學會通過實例歸納概念
2)通過學習等比數(shù)列的通項公式及其推導學會歸納假設
3)提高數(shù)學建模的能力
3、情感目標:
1)充分感受數(shù)列是反映現(xiàn)實生活的模型
2)體會數(shù)學是來源于現(xiàn)實生活并應用于現(xiàn)實生活
3)數(shù)學是豐富多彩的而不是枯燥無味的
三、教學對象及學習需要分析
1、 教學對象分析:
1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎,理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。
2)對歸納假設較弱,應加強這方面教學
2、學習需要分析:
四. 教學策略選擇與設計
1.課前復習
1)復習等差數(shù)列的概念及通向公式
2)復習指數(shù)函數(shù)及其圖像和性質
2.情景導入
高中數(shù)列教案(篇10)
本課是“等比數(shù)列的前n項和”的第一課時,是“等差數(shù)列的前n項和”與“等比數(shù)列”內容的延續(xù),與函數(shù)等知識有著密切的聯(lián)系,也是以后學數(shù)列的求和,數(shù)學歸納法等的基礎。本節(jié)的'有助于提升學生的創(chuàng)新思維和探索精神,其中充分利用數(shù)學文化背境故事引入課題,也是培養(yǎng)學生應用意識和數(shù)學能力的良好載體。
1.對教材的處理。首先借助數(shù)學文化背境提出問題,將學生帶入了求棋盤麥??倲?shù)的思考之中。然后引導學生分析數(shù)學現(xiàn)象,師生互動,設計五個問題層層深入,剖析了錯位相減法中減的妙用,使學生容易接受為什么要錯位相減,經(jīng)過繁難的計算之后,突然發(fā)現(xiàn)了錯位相減法,讓學生感受到這種方法的神奇。從而得出等比數(shù)列前n項和公式,再對公式進行簡單應用,深化理解,最后總結歸納,回到故事結束,首尾呼應,把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續(xù)積極思維。
2.設計思想是。本節(jié)課立足課本,著力挖掘,層次分明。充分體現(xiàn)以學生發(fā)展為本,遵循學生的認知規(guī)律。如本節(jié)課例題的設計,先通過精講一題(例1),使學生既鞏固了知識,又形成了技能;通過例題講解(例2),進一步滲透分類討論的思想,培養(yǎng)分類討論的思想和思維的縝密性;再有設計選作思考題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”體現(xiàn)數(shù)學的文化價值。在教學思想上既注重知識形成過程的教學,還注重了學生學習方法的指導,探究能力的訓練,引導學生發(fā)現(xiàn)數(shù)學的美,體驗求知的樂趣。
3.不足之處。本節(jié)雖然以數(shù)學文化背景的故事為引例來激發(fā)學生的學習興趣,然而卻在求和公式的證明中以“可發(fā)現(xiàn),如果式子兩邊乘以公比…”一筆帶過,這個“發(fā)現(xiàn)”卻不是大多學生能做到的,他們只能驚嘆于解法的奇妙,從而求知欲卻會因其“技巧性太強”而逐步消退。因此如何在有趣的數(shù)學文化背景下進一步拓展學生的視野,使數(shù)學知識的發(fā)生及形成更為自然,更能貼近學生的認知特征,這是我后面需要改進的方向。
總之,這節(jié)課收獲多多,也意識到自身的不足,今后我一定要揚長避短,不斷充實自己,爭取更大的進步。
高一數(shù)學函數(shù)教案9篇
如果您想讀一篇好文章幼兒教師教育網(wǎng)編輯建議您看看“高一數(shù)學函數(shù)教案”,我們非常感謝您的關注希望您能收藏我們的網(wǎng)站。老師都需要為每堂課準備教案課件,每位老師都需要認真準備自己的教案課件。教案是教師在教學過程中具體操作的依據(jù)。
高一數(shù)學函數(shù)教案【篇1】
初中數(shù)學知識少、淺、難度容易、知識面笮。高中數(shù)學知識廣泛,將對初中的數(shù)學知識推廣和引伸,也是對初中數(shù)學知識的完善。如:初中學習的角的概念只是“0—1800”范圍內的,但實際當中也有7200和“—300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習“排列組合”知識,以便解決排隊方法種數(shù)等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統(tǒng)計這些排列的數(shù)學方法。初中中對一個負數(shù)開平方無意義,但在高中規(guī)定了i2=-1,就使-1的平方根為±i.即可把數(shù)的概念進行推廣,使數(shù)的概念擴大到復數(shù)范圍等。這些知識同學們在以后的學習中將逐漸學習到。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課后老師布置作業(yè),然后通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數(shù)學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節(jié)課,自習時間三節(jié)課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數(shù)學學習的時間相對比初中少,數(shù)學教師將相初中那樣監(jiān)督每個學生的作業(yè)和課外練習,就能達到相初中那樣把知識讓每個學生掌握后再進行新課。
初中學生自學那能力低,大凡考試中所用的解題方法和數(shù)學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現(xiàn)在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學題型的開發(fā)在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創(chuàng)新才能適應現(xiàn)代科學的發(fā)展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養(yǎng),人的一生只有18---24年時間是有導師的學習,其后半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數(shù)學成績也只能是一般程度?,F(xiàn)在高考數(shù)學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創(chuàng)新思維和培養(yǎng)學生的創(chuàng)造能力培養(yǎng)。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創(chuàng)造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數(shù)學生不會分類討論。
初中數(shù)學中,題目、已知和結論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數(shù)學學習中我們將會大量地、廣泛地應用代數(shù)的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們采用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數(shù)學思想。
初中學生由于學習數(shù)學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現(xiàn)實生活中三維空間,但初中只學了平面幾何,那么就不能對三維空間進行嚴格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養(yǎng)學生高素質思維。提高學生的思維遞進性。
高一數(shù)學函數(shù)教案【篇2】
教學目標:
進一步理解指數(shù)函數(shù)及其性質,能運用指數(shù)函數(shù)模型,解決實際問題。
教學重點:
用指數(shù)函數(shù)模型解決實際問題。
教學難點:
指數(shù)函數(shù)模型的建構。
教學過程:
一、情境創(chuàng)設
1.某工廠今年的年產值為a萬元,為了增加產值,今年增加了新產品的研發(fā),預計從明年起,年產值每年遞增15%,則明年的產值為萬元,后年的產值為萬元.若設x年后實現(xiàn)產值翻兩番,則得方程。
二、數(shù)學建構
指數(shù)函數(shù)是常見的數(shù)學模型,也是重要的數(shù)學模型,常見于工農業(yè)生產,環(huán)境治理以及投資理財?shù)冗f增的常見模型為=(1+p%)x(p>0);遞減的常見模型則為=(1-p%)x(p>0)。
三、數(shù)學應用
例1某種放射性物質不斷變化為其他,每經(jīng)過一年,這種物質剩留的質量是原來的84%,寫出這種物質的剩留量關于時間的函數(shù)關系式。
例2某醫(yī)藥研究所開發(fā)一種新藥,據(jù)檢測:如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克),與服藥后的時間t(小時)之間近似滿足如圖曲線,其中OA是線段,曲線ABC是函數(shù)=at的圖象。試根據(jù)圖象,求出函數(shù)=f(t)的解析式。
例3某位公民按定期三年,年利率為2.70%的方式把5000元存入銀行.問三年后這位公民所得利息是多少元?
例4某種儲蓄按復利計算利息,若本金為a元,每期利率為r,設存期是x,本利和(本金加上利息)為元。
(1)寫出本利和隨存期x變化的函數(shù)關系式;
(2)如果存入本金1000元,每期利率為2.25%,試計算5期后的本利和。
(復利是把前一期的利息和本金加在一起作本金,再計算下一期利息的一種計算利息方法)
小結:銀行存款往往采用單利計算方式,而分期付款、按揭則采用復利計算.這是因為在存款上,為了減少儲戶的重復操作給銀行帶來的工作壓力,同時也是為了提高儲戶的長期存款的積極性,往往定期現(xiàn)年的利息比再次存取定期一年的收益要高;而在分期付款的過程中,由于每次存入的現(xiàn)金存期不一樣,故需要采用復利計算方式.比如“本金為a元,每期還b元,每期利率為r”,第一期還款時本息和應為a(1+p%),還款后余額為a(1+p%)-b,第二次還款時本息為(a(1+p%)-b)(1+p%),再還款后余額為(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次還款后余額為a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.這就是復利計算方式。
例52000~2002年,我國國內生產總值年平均增長7.8%左右.按照這個增長速度,畫出從2000年開始我國年國內生產總值隨時間變化的圖象,并通過圖象觀察到2010年我國年國內生產總值約為2000年的多少倍(結果取整數(shù))。
高一數(shù)學函數(shù)教案【篇3】
高一數(shù)學函數(shù)課件
一、內容和內容解析
函數(shù)是數(shù)學中最重要的基本概念之一,它揭示了現(xiàn)實世界中數(shù)量關系之間相互依存和變化的實質,是刻畫和研究現(xiàn)實世界變化規(guī)律的重要模型。托馬斯稱:函數(shù)是現(xiàn)代數(shù)學思想之花。
《集合與函數(shù)概念》一章在高中數(shù)學中起著承上啟下的作用。本課學習的函數(shù)概念及其反映出來的數(shù)學思想方法已廣泛滲透到數(shù)學的各個領域,是進一步學習數(shù)學的重要基礎。函數(shù)的思想方法貫穿了高中數(shù)學課程的始終。
本小節(jié)是繼學習集合語言之后,運用集合與對應語言,在初中學習的基礎上,進一步刻畫函數(shù)概念,目的是讓學生認識到它們優(yōu)越性,從根本上揭示函數(shù)的本質。因此本課的教學重點是:學會用集合與對應語言刻畫函數(shù)概念,進一步認識函數(shù)是描述客觀世界中變量間依賴關系的數(shù)學模型。
二、目標和目標解析
1.正確理解函數(shù)的概念,會用集合與對應語言刻畫函數(shù)。通過實例分析,體會對應關系在刻畫函數(shù)概念中的作用;強化數(shù)學的應用與建模意識;培養(yǎng)學生的學習興趣。
2.理解函數(shù)三要素,會求簡單函數(shù)的定義域。通過例題教學與練習,培養(yǎng)歸納概括能力。
3.理解符號y=f(x)的含義,明確f(x)與f(a)的區(qū)別與聯(lián)系。體會函數(shù)思想,代換思想,提高思維品質。
三、教學問題診斷分析
本堂課作為一堂公開課,我曾在多個班級試教。主要問題有:
首先,由三個實例歸納共性會遇到困難。原因是由具體實例到抽象的數(shù)學語言,要求學生具備較強的歸納概括能力;而對高一學生抽象思維能力相對較弱。
其次,學生不容易認識到函數(shù)概念的整體性。原因是把函數(shù)單一地理解成函數(shù)中的對應關系,甚至認為函數(shù)就是函數(shù)值。
第三,函數(shù)符號y=f(x)比較抽象,學生難以理解。
因此本課的教學難點是:1、從主觀知識抽象成為客觀概念。2、函數(shù)符號y=f(x)的理解。
四、學習行為分析
在初中學生已學習了變量觀點下的函數(shù)定義,具體研究了幾類最簡單的函數(shù),對函數(shù)并不陌生;學生已經(jīng)會把函數(shù)看成變量之間的依賴關系;同時,雖然函數(shù)概念比較抽象,但函數(shù)現(xiàn)象大量存在于學生周圍,學生能列舉出函數(shù)的實例,已具備初步的數(shù)學建模能力。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?我們目前所教的學生經(jīng)歷了初中新課程改革,他們普遍思維活躍,表達能力強,有較強的獨立解決問題的能力。在平時的學習過程中,他們更喜歡教師創(chuàng)造疑問,然后自己想辦法解決問題,通過教師的啟發(fā)點撥,學生以自己的努力找到解決問題的方法。學生作為教學主體隨時對所學知識產生有意注意,努力思索解決疑問的方式,使自己的能力通過教師的點撥得到發(fā)揮。
針對學生這一學習方式,我們在教學過程中從學生已有的知識經(jīng)驗出發(fā),讓學生明白新問題產生的背景,引導學生對三個實例進行分析,然后歸納共性,抽象出用集合與對應語言刻畫的函數(shù)概念。其間采用了多媒體動畫演示、教師引導、學生探究、討論、交流一系列活動,讓學生感到“概念的.得出是水到渠成的,自然的而不是強加于人的”。
對函數(shù)概念的整體性的理解,通過設計“想一想”、“練一練”、“試一試”等問題情景激發(fā)學生積極參與,在問題解決的過程中鞏固函數(shù)概念。而對函數(shù)符號y=f(x),則讓學生分析實例和動手操作,來認識和理解符號的內涵;并進一步滲透函數(shù)思想、代換思想。如三個實例用統(tǒng)一的符號表示、例4中計算當自變量是數(shù)字、字母不同情況時的函數(shù)值。讓學生在做數(shù)學中領會含義,學會解題方法,提高解決問題的能力。
五、教學支持條件分析
《標準》提倡運用信息技術呈現(xiàn)以往教學難以呈現(xiàn)的課程內容,數(shù)學的理解需要直觀的觀察、視覺的感知,特別是幾何圖形的性質,復雜的計算過程,函數(shù)的動態(tài)變化過程、幾何直觀背景等,若能利用信息技術來直觀呈現(xiàn)使其可視化將會有助于學生的理解。本節(jié)課將充分利用信息技術支持課堂教學。
1、? ?多媒體動畫演示炮彈發(fā)射。在形象生動的情景中感受高度h隨時間t的變化而變化的運動規(guī)律。
2、? ?用幾何畫板畫出h=130t-5t2的圖象。在圖象上任取一點P(t,h),然后拖動點P的位置,觀察點P的橫坐標t與縱坐標h的變化規(guī)律。
3、? ?制作幻燈片展示問題情景。
高一數(shù)學函數(shù)教案【篇4】
教學目標:
1.理解的概念,了解三要素.
2.通過對抽象符號的認識與使用,使學生在符號表示方面的能力得以提高.
3.通過定義由變量觀點向映射觀點得過渡,使學生能從發(fā)展與聯(lián)系的角度看待數(shù)學學習.
教學重點難點:重點是在映射的基礎上理解的概念;
難點是對抽象符號的認識與使用.
教學用具:投影儀
教學方法:自學研究與啟發(fā)討論式.
教學過程:
一、復習與引入
今天我們研究的內容是的概念.并不象前面學習的集合,映射一樣我們一無所知,而是比較熟悉,所以我先找同學說說對的認識,如是什么?學過什么?
(要求學生盡量用自己的話描述初中的定義,并試舉出各類學過的例子)
學生舉出如 等,待學生說完定義后教師打出投影片,給出定義之后教師也舉一個例子,問學生.
提問1. 是嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是,理由是沒有兩個變量,也有的認為是,理由是可以可做 .)
教師由此指出我們爭論的焦點,其實就是定義的不完善的地方,這也正是我們今天研究定義的必要性,新的定義將在與原定義不相違背的基礎上從更高的觀點,將它完善與深化.
二、新課
現(xiàn)在請同學們打開書翻到第50 頁,從這開始閱讀有關的內容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的的定義是什么?能否用最簡單的語言來概括一下.
學生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導形式發(fā)現(xiàn)定義的本質.
(板書)2.2
一、的概念
1.定義:如果A,B都是非空的數(shù)集,那么A到B的映射 就叫做A到B的,記作 .其中原象集合A稱為定義域,象集C 稱為值域.
問題3:映射與有何關系?(一定是映射嗎?映射一定是嗎?)
引導學生發(fā)現(xiàn),是特殊的映射,特殊在集合A,B必是非空的數(shù)集.
2.本質:是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學生試回答剛才關于 是不是的問題,要求從映射的角度解釋.
此時學生可以清楚的看到 滿足映射觀點下的定義,故是一個,這樣解釋就很自然.
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋 是個?
從映射角度看可以是 其中定義域是 ,值域是 .
從剛才的分析可以看出,映射觀點下的定義更具一般性,更能揭示的`本質.這也是我們后面要對進行理論研究的一種需要.所以我們著重從映射角度再來認識.
3.的三要素及其作用(板書)
是映射,自然是由三件事構成的一個整體,分別稱為定義域.值域和對應法則.當我們認識一個時,應從這三方面去了解認識它.
例1 以下關系式表示嗎?為什么?
(1) ; (2) .
解:(1)由 有意義得 ,解得 .由于定義域是空集,故它不能表示.
(2) 由 有意義得 ,解得 .定義域為 ,值域為 .
由以上兩題可以看出三要素的作用
(1)判斷一個關系是否存在.(板書)
例2 下列各中,哪一個與 是同一個.
(1) ; (2) (3) ; (4) .
解:先認清 ,它是 (定義域)到 (值域)的映射,其中
.
再看(1)定義域為 且 ,是不同的; (2)定義域為 ,是不同的;
(4) ,法則是不同的;
而(3)定義域是 ,值域是 ,法則是乘2減1,與 完全相同.
求解后要求學生明確判斷兩個是否相同應看定義域和對應法則完全一致,這時三要素的又一作用.
(2)判斷兩個是否相同.(板書)
下面我們研究一下如何表示,以前我們學習時雖然會表示,但沒有相系統(tǒng)研究的表示法,其實表示法有很多,不過首先應從記號 說起.
4.對符號 的理解(板書)
首先讓學生知道 與 的含義是一樣的,它們都表示 是 的,其中 是自變量, 是值,連接的紐帶是法則 ,所以這個符號本身也說明是三要素構成的整體.下面我們舉例說明.
例3 已知 試求 (板書)
分析:首先讓學生認清 的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當自變量 取3時,對應的值即 ;
含義2:定義域中原象3的象 ,根據(jù)求象的方法知 .而 應表示原象 的象,即 .
計算之后,要求學生了解 與 的區(qū)別, 是常量,而 是變量, 只是 中一個特殊值.
最后指出在剛才的題目中 是用一個具體的解析式表示的,而以后研究的 不一定能用一個解析式表示,此時我們需要用其他的方法表示,具體的方法下節(jié)課再進一步研究.
三、小結
1. 的定義
2. 對三要素的認識
3. 對符號的認識
四、作業(yè):略
五、板書設計
2.2 例1. 例3.
一. 的概念
1. 定義
2. 本質 例2. 小結:
3. 三要素的認識及作用
4. 對符號的理解
探究活動
在數(shù)學及實際生活中有著廣泛的應用,在我們身邊就存在著很多與有關的問題如在我們身邊就有不少分段的實例,下面就是一個生活中的分段.
夏天,大家都喜歡吃西瓜,而西瓜的價格往往與西瓜的重量相關.某人到一個水果店去買西瓜,價格表上寫的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一個西瓜,稱重后店主說5元1角,1角就不要了,給5元吧,可這位聰明的顧客馬上說,你不僅沒少要,反而多收了我錢,當顧客講出理由,店主只好承認了錯誤,照實收了錢.
同學們,你知道顧客是怎樣店主坑人了呢?其實這樣的數(shù)學問題在我們身邊有很多,只要你注意觀察,積累,并學以至用,就能成為一個聰明人,因為數(shù)學可以使人聰明起來.
答案:
若西瓜重9斤以下則最多應付4.5元,若西瓜重9斤以上,則最少也要5.4元,不可能出現(xiàn)5.1元這樣的價錢,所以店主坑人了.
高一數(shù)學函數(shù)教案【篇5】
1、函數(shù):設A、B為非空集合,如果按照某個特定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù),寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對應的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。
2、函數(shù)定義域的解題思路:
⑴ 若x處于分母位置,則分母x不能為0。
⑵ 偶次方根的被開方數(shù)不小于0。
⑶ 對數(shù)式的真數(shù)必須大于0。
⑷ 指數(shù)對數(shù)式的底,不得為1,且必須大于0。
⑸ 指數(shù)為0時,底數(shù)不得為0。
⑹ 如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的,那么,它的定義域是各個部分都有意義的x值組成的集合。
⑺ 實際問題中的函數(shù)的定義域還要保證實際問題有意義。
⑴ 觀察法:適用于初等函數(shù)及一些簡單的由初等函數(shù)通過四則運算得到的函數(shù)。
⑵ 圖像法:適用于易于畫出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。
⑶ 配方法:主要用于二次函數(shù),配方成 y=(x-a)2+b 的形式。
⑷ 代換法:主要用于由已知值域的函數(shù)推測未知函數(shù)的值域。
⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進行加減。
6、映射:設A、B是兩個非空集合,如果按某一個確定的對應法則f,使對于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應,那么就稱對應f:A→B為從集合A到集合B的映射。
⑴ 集合A中的每一個元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中對應的象可以是同一個。
⑶ 不要求集合B中的每一個元素在集合A中都有原象。
⑴ 在定義域的不同部分上有不同的解析式表達式。
⑵ 各部分自變量和函數(shù)值的取值范圍不同。
⑶ 分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集。
8、復合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復合函數(shù)。
高一數(shù)學函數(shù)教案【篇6】
一、方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù)y=f(x),使f(x)=0 的實數(shù)x叫做函數(shù)的零點。(實質上是函數(shù)y=f(x)與x軸交點的橫坐標)
2、函數(shù)零點的意義:方程f(x)=0 有實數(shù)根函數(shù)y=f(x)的圖象與x軸有交點函數(shù)y=f(x)有零點
3、零點定理:函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,并且有f(a)f(b)0,那么函數(shù)y=f(x)在區(qū)間(a,b)至少有一個零點c,使得f( c)=0,此時c也是方程 f(x)=0 的根。
4、函數(shù)零點的求法:求函數(shù)y=f(x)的零點:
(1) (代數(shù)法)求方程f(x)=0 的實數(shù)根;
(2) (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)y=f(x)的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點.
5、二次函數(shù)的零點:二次函數(shù)f(x)=ax2+bx+c(a≠0).
1)△0,方程f(x)=0有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有兩個零點.
2)△=0,方程f(x)=0有兩相等實根(二重根),二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
3)△0,方程f(x)=0無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點.
二、二分法
1、概念:對于在區(qū)間[a,b]上連續(xù)不斷且f(a)f(b)0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的'區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。
2、用二分法求方程近似解的步驟:
⑴確定區(qū)間[a,b],驗證f(a)f(b)0,給定精確度ε;
⑵求區(qū)間(a,b)的中點c;
⑶計算f(c),
①若f(c)=0,則c就是函數(shù)的零點;
②若f(a)f(c)0,則令b=c(此時零點x0∈(a,c))
③若f(c)f(b)0,則令a=c(此時零點x0∈(c,b))
(4)判斷是否達到精確度ε:即若|a-b|ε,則得到零點近似值為a(或b);否則重復⑵~⑷
三、函數(shù)的應用:
(1)評價模型: 給定模型利用學過的知識解模型驗證是否符合實際情況。
(2)幾個增長函數(shù)模型:一次函數(shù):y=ax+b(a0)
指數(shù)函數(shù):y=ax(a1) 指數(shù)型函數(shù): y=kax(k1)
冪函數(shù): y=xn( nN*) 對數(shù)函數(shù):y=logax(a1)
二次函數(shù):y=ax2+bx+c(a0)
增長快慢:V(ax)V(xn)V(logax)
解不等式 (1) log2x x2 (2) log2x 2x
(3)分段函數(shù)的應用:注意端點不能重復取,求函數(shù)值先判斷自變量所在的區(qū)間。
(4)二次函數(shù)模型: y=ax2+bx+c(a≠0) 先求函數(shù)的定義域,在求函數(shù)的對稱軸,看它在不在定義域內,在的話代進求出最值,不在的話,將定義域內離對稱軸最近的點代進求最值。
(5)數(shù)學建模:
高一數(shù)學函數(shù)教案【篇7】
(一)通過具體函數(shù),讓學生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學概念的建立過程,培養(yǎng)其抽象概括能力.
(二)理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應用定義判斷一些簡單函數(shù)的奇偶性.
(三)在經(jīng)歷概念形成的過程中,培養(yǎng)學生歸納、抽象概括能力,體驗數(shù)學既是抽象的又是具體的.
這節(jié)內容學生在初中雖沒學過,但已經(jīng)學習過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎上,引入奇、偶函數(shù)的概念,便于學生理解.在引入概念時始終結合具體函數(shù)的圖像,增強直觀性,這樣更符合學生的認知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學生理解:奇函數(shù)、偶函數(shù)的定義域是關于原點對稱的非空數(shù)集;對于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎上,讓學生了解:奇函數(shù)、偶函數(shù)的矛盾概念——非奇非偶函數(shù).關于單調性與奇偶性關系,引導學生拓展延伸,可以取得理想的效果.
1.觀察如下兩圖(圖略),思考并討論以下問題:
(1)這兩個函數(shù)圖像有什么共同特征?
(2)相應的兩個函數(shù)值對應表是如何體現(xiàn)這些特征的?
可以看到兩個函數(shù)的圖像都關于y軸對稱.從函數(shù)值對應表可以看到,當自變量x取一對相反數(shù)時,相應的兩個函數(shù)值相同.
2.觀察函數(shù)f(x)=x和f(x)=的.圖像,并完成下面的兩個函數(shù)值對應表,然后說出這兩個函數(shù)有什么共同特征.
可以看到兩個函數(shù)的圖像都關于原點對稱.函數(shù)圖像的這個特征,反映在解析式上就是:當自變量x取一對相反數(shù)時,相應的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時,稱函數(shù)y=f(x)為奇函數(shù).
由上面的分析討論引導學生建立奇函數(shù)、偶函數(shù)的定義.
1.奇、偶函數(shù)的定義.
如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).
2.提出問題,組織學生討論.
(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?
(2)奇、偶函數(shù)的圖像有什么特征?
(3)奇、偶函數(shù)的定義域有什么特征?
[例題]
1.判斷下列函數(shù)的奇偶性.
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當x>0時,f(x)=x(1+x),求f(x)的表達式.
解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).
(2)當x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內是增函數(shù),還是減函數(shù),并證明你的結論.
解:先結合圖像特征:偶函數(shù)的圖像關于y軸對稱,猜想f(x)在(0,+∞)內是增函數(shù),證明如下:
∴f(x)在(0,+∞)上是增函數(shù).
思考:奇函數(shù)或偶函數(shù)在關于原點對稱的兩個區(qū)間上的單調性有何關系?
[練習]
1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調性如何.
4.設f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個?
2.設f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).
4.一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?
高一數(shù)學函數(shù)教案【篇8】
1.2解三角形應用舉例第四課時
一、教學目標
1、能夠運用正弦定理、余弦定理等知識和方法進一步解決有關三角形的問題,掌握三角形的面積公式的簡單推導和應用
2、本節(jié)課補充了三角形新的面積公式,巧妙設疑,引導學生證明,同時總結出該公式的特點,循序漸進地具體運用于相關的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學知識的生動運用,教師要放手讓學生摸索,使學生在具體的論證中靈活把握正弦定理和余弦定理的特點,能不拘一格,一題多解。只要學生自行掌握了兩定理的特點,就能很快開闊思維,有利地進一步突破難點。
3、讓學生進一步鞏固所學的知識,加深對所學定理的理解,提高創(chuàng)新能力;進一步培養(yǎng)學生研究和發(fā)現(xiàn)能力,讓學生在探究中體驗愉悅的成功體驗
二、教學重點、難點
重點:推導三角形的面積公式并解決簡單的相關題目
難點:利用正弦定理、余弦定理來求證簡單的證明題
三、教學過程
Ⅰ.課題導入
[創(chuàng)設情境]
師:以前我們就已經(jīng)接觸過了三角形的面積公式,今天我們來學習它的另一個表達公式。在
ABC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們如何用已知邊和角表示?
生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA
師:根據(jù)以前學過的三角形面積公式S=ah,應用以上求出的高的公式如h=bsinC代入,可以推導出下面的三角形面積公式,S=absinC,大家能推出其它的幾個公式嗎?
生:同理可得,S=bcsinA,S=acsinB
Ⅱ.講授新課
[范例講解]
例1、在ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)
(1)已知a=14cm,c=24cm,B=150;
(2)已知B=60,C=45,b=4cm;
(3)已知三邊的長分別為a=3cm,b=4cm,c=6cm
分析:這是一道在不同已知條件下求三角形的面積的問題,與解三角形問題有密切的關系,我們可以應用解三角形面積的知識,觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。
解:略
例2、如圖,在某市進行城市環(huán)境建設中,要把一個三角形的區(qū)域改造成室內公園,經(jīng)過測量得到這個三角形區(qū)域的三條邊長分別為68m,88m,127m,這個區(qū)域的面積是多少?(精確到0.1cm)?
思考:你能把這一實際問題化歸為一道數(shù)學題目嗎?
本題可轉化為已知三角形的三邊,求角的問題,再利用三角形的面積公式求解。
解:設a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,
cosB==≈0.7532
sinB=0.6578應用S=acsinB
S≈681270.6578≈2840.38(m)
答:這個區(qū)域的面積是2840.38m。
變式練習1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S
提示:解有關已知兩邊和其中一邊對角的問題,注重分情況討論解的個數(shù)。
答案:a=6,S=9;a=12,S=18
例3、在ABC中,求證:
(1)
(2)++=2(bccosA+cacosB+abcosC)
分析:這是一道關于三角形邊角關系恒等式的證明問題,觀察式子左右兩邊的特點,用正弦定理來證明
證明:(1)根據(jù)正弦定理,可設
===k顯然k0,所以
左邊===右邊
(2)根據(jù)余弦定理的推論,
右邊=2(bc+ca+ab)
=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左邊
變式練習2:判斷滿足sinC=條件的三角形形狀
提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”(解略)直角三角形
Ⅲ.課堂練習課本第18頁練習第1、2、3題
Ⅳ.課時小結
利用正弦定理或余弦定理將已知條件轉化為只含邊的式子或只含角的三角函數(shù)式,然后化簡并考察邊或角的關系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。
Ⅴ.課后作業(yè)
《習案》作業(yè)七
高一數(shù)學函數(shù)教案【篇9】
設函數(shù)y=f(x)的定義域為I,如果對應定義域I內的某個區(qū)間D內的任意兩個變量x1、x2,當x1
ⅰ在給出區(qū)間內任取x1、x2,則x1、x2∈D,且x1
ⅱ 做差值f(x1)-f(x2),并進行變形和配方,變?yōu)橐子谂袛嗾摰男问健?/p>
ⅲ判斷變形后的表達式f(x1)-f(x2)的符號,指出單調性。
復合函數(shù)y=f[g(x)]的單調性與構成它的函數(shù)u=g(x),y=f(u)的單調性密切相關,其規(guī)律為“同增異減”;多個函數(shù)的復合函數(shù),根據(jù)原則“減偶則增,減奇則減”。
函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調遞增區(qū)間為A和B,不能表示為A∪B。
對于函數(shù)f(x)定義域內的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數(shù);
對于函數(shù)f(x)定義域內的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。
ⅰ無論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關于原點對稱。
ⅱ奇函數(shù)的圖像關于原點對稱,偶函數(shù)的圖像關于y軸對稱。
ⅰ先確定函數(shù)的定義域是否關于原點對稱,若不關于原點對稱,則為非奇非偶函數(shù)。
ⅱ確定f(x) 和f(-x)的關系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。
⑴對于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。
⑵對于易于畫出函數(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。
ⅰ判斷二次函數(shù)的頂點是否在所求區(qū)間內,若在區(qū)間內,則接ⅱ,若不在區(qū)間內,則接ⅲ。
ⅱ 若二次函數(shù)的頂點在所求區(qū)間內,則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點為最小值,a0時的最大值或a
若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);
若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。